Vulnerability Scan Result

Title: | No title found |
Description: | No description found |
ip_address | 185.197.251.209 |
country | DE ![]() |
network_name | Contabo GMBH |
asn | AS51167 |
22/tcp | ssh | OpenSSH 8.7 |
25/tcp | smtp | - - |
53/tcp | domain | PowerDNS Authoritative Server 4.9.5 |
80/tcp | http | Apache httpd - |
110/tcp | pop3 | Dovecot pop3d - |
111/tcp | rpcbind | - 2-4 |
143/tcp | imap | Dovecot imapd - |
443/tcp | https | Apache httpd - |
465/tcp | smtp | Exim smtpd 4.98.2 |
587/tcp | smtp | Exim smtpd 4.98.2 |
993/tcp | imaps | - - |
995/tcp | pop3s | - - |
2078/tcp | https | cPanel httpd - |
2080/tcp | https | cPanel httpd - |
2082/tcp | http | - - |
2083/tcp | https | - - |
2086/tcp | http | - - |
2087/tcp | https | - - |
3306/tcp | mysql | MariaDB - |
Software / Version | Category |
---|---|
Apache HTTP Server | Web servers |
Web Application Vulnerabilities
Evidence
URL | Response URL | Evidence |
---|---|---|
http://m.directivepublications.org/ | http://m.directivepublications.org/ | Communication is made over unsecure, unencrypted HTTP. |
Vulnerability description
We noticed that the communication between the web browser and the server is done using the HTTP protocol, which transmits data unencrypted over the network.
Risk description
The risk is that an attacker who manages to intercept the communication at the network level can read and modify the data transmitted (including passwords, secret tokens, credit card information and other sensitive data).
Recommendation
We recommend you to reconfigure the web server to use HTTPS - which encrypts the communication between the web browser and the server.
Classification
CWE | CWE-311 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
Software / Version | Category |
---|---|
Apache HTTP Server | Web servers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
http://m.directivepublications.org/cgi-sys | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Response has an internal server error status code: 500 |
Vulnerability description
We noticed that the target application's website does not properly handle or incorrectly manages exceptional conditions like Internal Server Errors. These errors can reveal sensitive information through their error messages. For instance, an error message could inadvertently disclose system paths or private application details.
Risk description
The risk exists that attackers could utilize information revealed in Internal Server Error messages to mount more targeted and effective attacks. Detailed error messages could, for example, expose a path traversal weakness (CWE-22) or other exploitable system vulnerabilities.
Recommendation
Ensure that error messages only contain minimal details that are useful to the intended audience, and nobody else. The messages need to strike the balance between being too cryptic and not being cryptic enough. They should not necessarily reveal the methods that were used to determine the error. Such detailed information can be used to refine the original attack to increase the chances of success. If errors must be tracked in some detail, capture them in log messages - but consider what could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive information such as passwords in any form. Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a username is valid or not.
Classification
CWE | CWE-209 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
http://m.directivepublications.org/ | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy
HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
http://m.directivepublications.org/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
http://m.directivepublications.org/ | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the X-Content-Type-Options
header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
http://m.directivepublications.org/cgi-sys | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Error message Internal Server Error found in: |
Vulnerability description
We noticed that the target application does not properly handle exceptional conditions, leading to error messages that reveal sensitive information.
Risk description
The risk is that an attacker may use the contents of error messages to help launch another, more focused attack. For example, an attempt to exploit a path traversal weakness (CWE-22) might yield the full pathname of the installed application.
Recommendation
It is recommended treating all exceptions of the application flow. Ensure that error messages only contain minimal details.
Classification
CWE | CWE-209 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Evidence
Vulnerability description
Website is accessible.
Evidence
URL | Method | Summary |
---|---|---|
http://m.directivepublications.org/ | OPTIONS | We did a HTTP OPTIONS request. The server responded with a 200 status code and the header: `Allow: OPTIONS,HEAD,GET,POST` Request / Response |
Vulnerability description
We have noticed that the webserver responded with an Allow HTTP header when an OPTIONS HTTP request was sent. This method responds to requests by providing information about the methods available for the target resource.
Risk description
The only risk this might present nowadays is revealing debug HTTP methods that can be used on the server. This can present a danger if any of those methods can lead to sensitive information, like authentication information, secret keys.
Recommendation
We recommend that you check for unused HTTP methods or even better, disable the OPTIONS method. This can be done using your webserver configuration.
Classification
CWE | CWE-16 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
http://m.directivepublications.org/cgi-sys | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Email Address: support@hireawsexpert.com |
http://m.directivepublications.org/cgi-sys/defaultwebpage.cgi | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Email Address: webmaster@m.directivepublications.org |
Vulnerability description
We noticed that this web application exposes email addresses, which might be unintended. While not inherently a vulnerability, this information could be leveraged in social engineering or spam related activities.
Risk description
The risk is that exposed email addresses within the application could be accessed by unauthorized parties. This could lead to privacy violations, spam, phishing attacks, or other forms of misuse.
Recommendation
Compartmentalize the application to have 'safe' areas where trust boundaries can be unambiguously drawn. Do not allow email addresses to go outside of the trust boundary, and always be careful when interfacing with a compartment outside of the safe area.
Classification
CWE | CWE-200 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Infrastructure Vulnerabilities
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2023-38408 | 9.8 | 0.73008 | 0.98724 | No | The PKCS#11 feature in ssh-agent in OpenSSH before 9.3p2 has an insufficiently trustworthy search path, leading to remote code execution if an agent is forwarded to an attacker-controlled system. (Code in /usr/lib is not necessarily safe for loading into ssh-agent.) NOTE: this issue exists because of an incomplete fix for CVE-2016-10009. |
CVE-2024-6387 | 8.1 | 0.73135 | 0.9873 | No | A security regression (CVE-2006-5051) was discovered in OpenSSH's server (sshd). There is a race condition which can lead sshd to handle some signals in an unsafe manner. An unauthenticated, remote attacker may be able to trigger it by failing to authenticate within a set time period. |
CVE-2021-41617 | 7 | 0.01864 | 0.82306 | No | sshd in OpenSSH 6.2 through 8.x before 8.8, when certain non-default configurations are used, allows privilege escalation because supplemental groups are not initialized as expected. Helper programs for AuthorizedKeysCommand and AuthorizedPrincipalsCommand may run with privileges associated with group memberships of the sshd process, if the configuration specifies running the command as a different user. |
CVE-2025-26465 | 6.8 | 0.56435 | 0.98014 | No | A vulnerability was found in OpenSSH when the VerifyHostKeyDNS option is enabled. A machine-in-the-middle attack can be performed by a malicious machine impersonating a legit server. This issue occurs due to how OpenSSH mishandles error codes in specific conditions when verifying the host key. For an attack to be considered successful, the attacker needs to manage to exhaust the client's memory resource first, turning the attack complexity high. |
CVE-2023-51385 | 6.5 | 0.09522 | 0.92516 | No | In ssh in OpenSSH before 9.6, OS command injection might occur if a user name or host name has shell metacharacters, and this name is referenced by an expansion token in certain situations. For example, an untrusted Git repository can have a submodule with shell metacharacters in a user name or host name. |
Vulnerability description
Vulnerabilities found for Openssh 8.7
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible SSH service. Starting Nmap ( https://nmap.org ) at 2025-08-17 12:43 EEST Nmap scan report for m.directivepublications.org (185.197.251.209) Host is up (0.028s latency). rDNS record for 185.197.251.209: vmi2740309.contaboserver.net
PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.7 (protocol 2.0) | ssh-auth-methods: | Supported authentication methods: | publickey | gssapi-keyex | gssapi-with-mic |_ password
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 1.48 seconds
Vulnerability description
We found that the SSH service with username/password authentication is publicly accessible. Network administrators often use remote administration protocols to control devices like switches, routers, and other essential systems. However, allowing these services to be accessible via the Internet can increase security risks, creating potential opportunities for attacks on the organization.
Risk description
Exposing this service online with username/password authentication can enable attackers to launch authentication attacks, like guessing login credentials, and potentially gaining unauthorized access. Vulnerabilities, such as unpatched software, protocol flaws, or backdoors could also be exploited. An example is the CVE-2024-3094 (XZ Utils Backdoor) vulnerability.
Recommendation
We recommend turning off SSH with username/password authentication access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the SSH service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, it is advisable to utilize SSH Public Key Authentication since it employs a key pair to verify the identity of a user or process.
Evidence
We managed to detect a publicly accessible MySQL service. PORT STATE SERVICE VERSION 3306/tcp open mysql MariaDB
Vulnerability description
We identified that the MySQL service is publicly accessible. MySQL serves as a common database for numerous web applications and services for data storage, making it a potential prime target for determined attackers.
Risk description
The risk exists that an attacker exploits this issue by launching a password-based attack on the MySQL service. Furthermore, they could exploit zero-day vulnerabilities to obtain remote access to the MySQL database server, thereby gaining complete control over its operating system and associated services. Such an attack could lead to the exposure of confidential or sensitive information.
Recommendation
We recommend turning off public Internet access to MySQL and opting for a Virtual Private Network (VPN) that enforces two-factor authentication (2FA). Avoid enabling direct user authentication to the MySQL service via the Internet, as this could enable attackers to engage in password-guessing and potentially initiate attacks leading to complete control. However, if the MySQL service is required to be directly accessible over the Internet, we recommend reconfiguring it to be accessible only from known IP addresses.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
m.directivepublications.org | SPF | Sender Policy Framework | "v=spf1 a mx ip4:45.127.101.21 ~all" |
Vulnerability description
We found that the Sender Policy Framework (SPF) record for the domain is configured with ~all (soft fail), which indicates that emails from unauthorized IP addresses are not explicitly denied. Instead, the recipient mail server is instructed to treat these messages with suspicion but may still accept them. This configuration may not provide enough protection against email spoofing and unauthorized email delivery, leaving the domain more vulnerable to impersonation attempts.
Risk description
The ~all directive in an SPF record allows unauthorized emails to pass through some email servers, even though they fail SPF verification. While such emails may be marked as suspicious or placed into a spam folder, not all mail servers handle soft fail conditions consistently. This creates a risk that malicious actors can spoof the domain to send phishing emails or other fraudulent communications, potentially causing damage to the organization's reputation and leading to successful social engineering attacks.
Recommendation
We recommend changing the SPF record's ~all (soft fail) directive to -all (hard fail). The -all setting tells recipient mail servers to reject emails from any IP addresses not listed in the SPF record, providing stronger protection against email spoofing. Ensure that all legitimate IP addresses and services that send emails on behalf of your domain are properly included in the SPF record before implementing this change.
Evidence
We found insecure DNS cookie usage on the following nameservers: angela.ns.cloudflare.com, rocky.ns.cloudflare.com
Vulnerability description
We found that the server does not implement DNS Cookies or uses them insecurely. DNS Cookies help prevent DNS-based attacks, such as spoofing and amplification attacks.
Risk description
The risk exists because without DNS Cookies, the server is vulnerable to DNS spoofing and amplification attacks. Attackers can manipulate responses or use the server in distributed denial-of-service (DDoS) attacks, compromising network availability and security.
Recommendation
We recommend enabling DNS Cookies to prevent spoofed DNS responses. Ensure proper cookie validation is implemented to mitigate DNS amplification attacks. Regularly update DNS servers to support the latest DNS security features.
Evidence
Software / Version | Category |
---|---|
Apache HTTP Server | Web servers |
Tawk.to | Live chat |
jQuery 3.5.1 | JavaScript libraries |
Google Tag Manager | Tag managers |
Google Analytics GA4 | Analytics |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
Apache HTTP Server | Web servers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
m.directivepublications.org | A | IPv4 address | 185.197.251.209 |
m.directivepublications.org | NS | Name server | angela.ns.cloudflare.com |
m.directivepublications.org | NS | Name server | rocky.ns.cloudflare.com |
m.directivepublications.org | MX | Mail server | 5 mail.directivepublications.org |
m.directivepublications.org | SOA | Start of Authority | angela.ns.cloudflare.com. dns.cloudflare.com. 2379778636 10000 2400 604800 1800 |
m.directivepublications.org | TXT | Text record | "google-site-verification=P_TVFrVqzuV6UAixW77BMmKDXN2SxCwdxL7p2v_rrD8" |
m.directivepublications.org | TXT | Text record | "google-site-verification=XalwbTMgro000HE9dTolgpVuOLWZQRLSfYFiqCJdpBY" |
m.directivepublications.org | SPF | Sender Policy Framework | "v=spf1 a mx ip4:45.127.101.21 ~all" |
m.directivepublications.org | CNAME | Canonical name | directivepublications.org |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Software / Version | Category |
---|---|
Basic | Security |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
cPanel | Hosting panels |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Operating System | Accuracy |
---|---|
Linux 5.0 - 5.4 | 98% |
Vulnerability description
OS Detection
Evidence
Software / Version | Category |
---|---|
Basic | Security |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.