Vulnerability Scan Result

Title: | База №1 по просмотру аниме онлайн бесплатно |
Description: | Оригинальный сайт animevost (анимевост), на котором вы можете смотреть бесперебойно аниме онлайн (anime online) в хорошем качестве, без рекламы, стабильно и без задержке. Самая быстрая озвучка новых серий аниме через час после выхода в японии. Огромный каталог anime доступен как для online просмотра, так и для скачивание. Проект анимевост (animevost). |
ip_address | 5.181.1.131 |
country | BG ![]() |
network_name | - |
asn | - |
22/tcp | ssh | OpenSSH 8.7 |
80/tcp | http | nginx 1.26.3 |
111/tcp | rpcbind | - 2-4 |
443/tcp | https | nginx 1.26.3 |
444/tcp | snpp | - - |
Software / Version | Category |
---|---|
ADFOX | Advertising |
Google Hosted Libraries | CDN |
Magnific Popup | JavaScript libraries |
DataLife Engine | CMS |
Google Analytics UA | Analytics |
Google Font API | Font scripts |
Apache HTTP Server | Web servers |
jQuery 1.11.1 | JavaScript libraries |
jQuery UI 1.9.2 | JavaScript libraries |
Liveinternet | Analytics |
Nginx 1.26.3 | Web servers, Reverse proxies |
PHP 7.2.24 | Programming languages |
PWA | Miscellaneous |
Google Tag Manager | Tag managers |
jsDelivr | CDN |
Web Application Vulnerabilities
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | Summary |
---|---|---|---|---|
CVE-2022-37454 | 9.8 | 0.01445 | 0.79926 | The Keccak XKCP SHA-3 reference implementation before fdc6fef has an integer overflow and resultant buffer overflow that allows attackers to execute arbitrary code or eliminate expected cryptographic properties. This occurs in the sponge function interface. |
CVE-2017-8923 | 9.8 | 0.03038 | 0.86139 | The zend_string_extend function in Zend/zend_string.h in PHP through 7.1.5 does not prevent changes to string objects that result in a negative length, which allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact by leveraging a script's use of .= with a long string. |
CVE-2020-7067 | 7.5 | 0.09005 | 0.92263 | In PHP versions 7.2.x below 7.2.30, 7.3.x below 7.3.17 and 7.4.x below 7.4.5, if PHP is compiled with EBCDIC support (uncommon), urldecode() function can be made to access locations past the allocated memory, due to erroneously using signed numbers as array indexes. |
CVE-2020-7062 | 7.5 | 0.00907 | 0.74807 | In PHP versions 7.2.x below 7.2.28, 7.3.x below 7.3.15 and 7.4.x below 7.4.3, when using file upload functionality, if upload progress tracking is enabled, but session.upload_progress.cleanup is set to 0 (disabled), and the file upload fails, the upload procedure would try to clean up data that does not exist and encounter null pointer dereference, which would likely lead to a crash. |
CVE-2020-7059 | 6.5 | 0.01521 | 0.80501 | When using fgetss() function to read data with stripping tags, in PHP versions 7.2.x below 7.2.27, 7.3.x below 7.3.14 and 7.4.x below 7.4.2 it is possible to supply data that will cause this function to read past the allocated buffer. This may lead to information disclosure or crash. |
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system. Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed 'high' severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1035 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | Summary |
---|---|---|---|---|
CVE-2021-41184 | 6.5 | 0.29896 | 0.96471 | jQuery-UI is the official jQuery user interface library. Prior to version 1.13.0, accepting the value of the `of` option of the `.position()` util from untrusted sources may execute untrusted code. The issue is fixed in jQuery UI 1.13.0. Any string value passed to the `of` option is now treated as a CSS selector. A workaround is to not accept the value of the `of` option from untrusted sources. |
CVE-2021-41183 | 6.5 | 0.01751 | 0.81792 | jQuery-UI is the official jQuery user interface library. Prior to version 1.13.0, accepting the value of various `*Text` options of the Datepicker widget from untrusted sources may execute untrusted code. The issue is fixed in jQuery UI 1.13.0. The values passed to various `*Text` options are now always treated as pure text, not HTML. A workaround is to not accept the value of the `*Text` options from untrusted sources. |
CVE-2021-41182 | 6.5 | 0.26482 | 0.96116 | jQuery-UI is the official jQuery user interface library. Prior to version 1.13.0, accepting the value of the `altField` option of the Datepicker widget from untrusted sources may execute untrusted code. The issue is fixed in jQuery UI 1.13.0. Any string value passed to the `altField` option is now treated as a CSS selector. A workaround is to not accept the value of the `altField` option from untrusted sources. |
CVE-2022-31160 | 6.1 | 0.06788 | 0.9092 | jQuery UI is a curated set of user interface interactions, effects, widgets, and themes built on top of jQuery. Versions prior to 1.13.2 are potentially vulnerable to cross-site scripting. Initializing a checkboxradio widget on an input enclosed within a label makes that parent label contents considered as the input label. Calling `.checkboxradio( "refresh" )` on such a widget and the initial HTML contained encoded HTML entities will make them erroneously get decoded. This can lead to potentially executing JavaScript code. The bug has been patched in jQuery UI 1.13.2. To remediate the issue, someone who can change the initial HTML can wrap all the non-input contents of the `label` in a `span`. |
CVE-2010-5312 | 6.1 | 0.045 | 0.88688 | Cross-site scripting (XSS) vulnerability in jquery.ui.dialog.js in the Dialog widget in jQuery UI before 1.10.0 allows remote attackers to inject arbitrary web script or HTML via the title option. |
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system. Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed 'high' severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1035 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Cookie Name | Evidence |
---|---|---|
https://v9.vost.pw/ | PHPSESSID | Set-Cookie: .vost.pw |
Vulnerability description
We found that the target application sets cookies with a domain scope that is too broad. Specifically, cookies intended for use within a particular application are configured in such a way that they can be accessed by multiple subdomains of the same primary domain.
Risk description
The risk is that a cookie set for example.com may be sent along with the requests sent to dev.example.com, calendar.example.com, hostedsite.example.com. Potentially risky websites under your main domain may access those cookies and use the victim session from the main site.
Recommendation
The `Domain` attribute should be set to the origin host to limit the scope to that particular server. For example if the application resides on server app.mysite.com, then it should be set to `Domain=app.mysite.com`
Classification
CWE | CWE-614 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Cookie Name | Evidence |
---|---|---|
https://v9.vost.pw/ | PHPSESSID | Set-Cookie: PHPSESSID=dp952uof76cu9u92vqlqp0ssbp |
Vulnerability description
We found that a cookie has been set without the Secure
flag, which means the browser will send it over an unencrypted channel (plain HTTP) if such a request is made. The root cause for this usually revolves around misconfigurations in the code or server settings.
Risk description
The risk exists that an attacker will intercept the clear-text communication between the browser and the server and he will steal the cookie of the user. If this is a session cookie, the attacker could gain unauthorized access to the victim's web session.
Recommendation
Whenever a cookie contains sensitive information or is a session token, then it should always be passed using an encrypted channel. Ensure that the secure flag is set for cookies containing such sensitive information.
Classification
CWE | CWE-614 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | Summary |
---|---|---|---|---|
CVE-2020-11023 | 6.9 | 0.21987 | 0.95542 | In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. |
CVE-2020-11022 | 6.9 | 0.02566 | 0.84947 | In jQuery versions greater than or equal to 1.2 and before 3.5.0, passing HTML from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. |
CVE-2019-11358 | 6.1 | 0.0133 | 0.7912 | jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles jQuery.extend(true, {}, ...) because of Object.prototype pollution. If an unsanitized source object contained an enumerable __proto__ property, it could extend the native Object.prototype. |
CVE-2015-9251 | 6.1 | 0.11287 | 0.9325 | jQuery before 3.0.0 is vulnerable to Cross-site Scripting (XSS) attacks when a cross-domain Ajax request is performed without the dataType option, causing text/javascript responses to be executed. |
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system. Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed 'high' severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1035 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://v9.vost.pw/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Risk description
The risk is that lack of this header permits an attacker to force a victim user to initiate a clear-text HTTP connection to the server, thus opening the possibility to eavesdrop on the network traffic and extract sensitive information (e.g. session cookies).
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Evidence
URL | Evidence |
---|---|
https://v9.vost.pw/ | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the X-Content-Type-Options
header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://v9.vost.pw/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://v9.vost.pw/ | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy
HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
Software / Version | Category |
---|---|
ADFOX | Advertising |
Google Hosted Libraries | CDN |
Magnific Popup | JavaScript libraries |
DataLife Engine | CMS |
Google Analytics UA | Analytics |
Google Font API | Font scripts |
Apache HTTP Server | Web servers |
jQuery 1.11.1 | JavaScript libraries |
jQuery UI 1.9.2 | JavaScript libraries |
Liveinternet | Analytics |
Nginx 1.26.3 | Web servers, Reverse proxies |
PHP 7.2.24 | Programming languages |
PWA | Miscellaneous |
Google Tag Manager | Tag managers |
jsDelivr | CDN |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Vulnerability description
Website is accessible.
Evidence
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Infrastructure Vulnerabilities
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2022-37454 | 9.8 | 0.01445 | 0.79926 | No | The Keccak XKCP SHA-3 reference implementation before fdc6fef has an integer overflow and resultant buffer overflow that allows attackers to execute arbitrary code or eliminate expected cryptographic properties. This occurs in the sponge function interface. |
CVE-2017-8923 | 9.8 | 0.03038 | 0.86139 | No | The zend_string_extend function in Zend/zend_string.h in PHP through 7.1.5 does not prevent changes to string objects that result in a negative length, which allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact by leveraging a script's use of .= with a long string. |
CVE-2020-7067 | 7.5 | 0.09005 | 0.92263 | No | In PHP versions 7.2.x below 7.2.30, 7.3.x below 7.3.17 and 7.4.x below 7.4.5, if PHP is compiled with EBCDIC support (uncommon), urldecode() function can be made to access locations past the allocated memory, due to erroneously using signed numbers as array indexes. |
CVE-2020-7062 | 7.5 | 0.00907 | 0.74807 | No | In PHP versions 7.2.x below 7.2.28, 7.3.x below 7.3.15 and 7.4.x below 7.4.3, when using file upload functionality, if upload progress tracking is enabled, but session.upload_progress.cleanup is set to 0 (disabled), and the file upload fails, the upload procedure would try to clean up data that does not exist and encounter null pointer dereference, which would likely lead to a crash. |
CVE-2020-7059 | 6.5 | 0.01521 | 0.80501 | No | When using fgetss() function to read data with stripping tags, in PHP versions 7.2.x below 7.2.27, 7.3.x below 7.3.14 and 7.4.x below 7.4.2 it is possible to supply data that will cause this function to read past the allocated buffer. This may lead to information disclosure or crash. |
Vulnerability description
Vulnerabilities found for PHP 7.2.24
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2023-38408 | 9.8 | 0.73008 | 0.98724 | No | The PKCS#11 feature in ssh-agent in OpenSSH before 9.3p2 has an insufficiently trustworthy search path, leading to remote code execution if an agent is forwarded to an attacker-controlled system. (Code in /usr/lib is not necessarily safe for loading into ssh-agent.) NOTE: this issue exists because of an incomplete fix for CVE-2016-10009. |
CVE-2024-6387 | 8.1 | 0.73135 | 0.9873 | No | A security regression (CVE-2006-5051) was discovered in OpenSSH's server (sshd). There is a race condition which can lead sshd to handle some signals in an unsafe manner. An unauthenticated, remote attacker may be able to trigger it by failing to authenticate within a set time period. |
CVE-2021-41617 | 7 | 0.01864 | 0.82306 | No | sshd in OpenSSH 6.2 through 8.x before 8.8, when certain non-default configurations are used, allows privilege escalation because supplemental groups are not initialized as expected. Helper programs for AuthorizedKeysCommand and AuthorizedPrincipalsCommand may run with privileges associated with group memberships of the sshd process, if the configuration specifies running the command as a different user. |
CVE-2025-26465 | 6.8 | 0.56435 | 0.98014 | No | A vulnerability was found in OpenSSH when the VerifyHostKeyDNS option is enabled. A machine-in-the-middle attack can be performed by a malicious machine impersonating a legit server. This issue occurs due to how OpenSSH mishandles error codes in specific conditions when verifying the host key. For an attack to be considered successful, the attacker needs to manage to exhaust the client's memory resource first, turning the attack complexity high. |
CVE-2023-51385 | 6.5 | 0.09522 | 0.92516 | No | In ssh in OpenSSH before 9.6, OS command injection might occur if a user name or host name has shell metacharacters, and this name is referenced by an expansion token in certain situations. For example, an untrusted Git repository can have a submodule with shell metacharacters in a user name or host name. |
Vulnerability description
Vulnerabilities found for Openssh 8.7
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2022-37454 | 9.8 | 0.01445 | 0.79926 | No | The Keccak XKCP SHA-3 reference implementation before fdc6fef has an integer overflow and resultant buffer overflow that allows attackers to execute arbitrary code or eliminate expected cryptographic properties. This occurs in the sponge function interface. |
CVE-2017-8923 | 9.8 | 0.03038 | 0.86139 | No | The zend_string_extend function in Zend/zend_string.h in PHP through 7.1.5 does not prevent changes to string objects that result in a negative length, which allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact by leveraging a script's use of .= with a long string. |
CVE-2020-7067 | 7.5 | 0.09005 | 0.92263 | No | In PHP versions 7.2.x below 7.2.30, 7.3.x below 7.3.17 and 7.4.x below 7.4.5, if PHP is compiled with EBCDIC support (uncommon), urldecode() function can be made to access locations past the allocated memory, due to erroneously using signed numbers as array indexes. |
CVE-2020-7062 | 7.5 | 0.00907 | 0.74807 | No | In PHP versions 7.2.x below 7.2.28, 7.3.x below 7.3.15 and 7.4.x below 7.4.3, when using file upload functionality, if upload progress tracking is enabled, but session.upload_progress.cleanup is set to 0 (disabled), and the file upload fails, the upload procedure would try to clean up data that does not exist and encounter null pointer dereference, which would likely lead to a crash. |
CVE-2020-7059 | 6.5 | 0.01521 | 0.80501 | No | When using fgetss() function to read data with stripping tags, in PHP versions 7.2.x below 7.2.27, 7.3.x below 7.3.14 and 7.4.x below 7.4.2 it is possible to supply data that will cause this function to read past the allocated buffer. This may lead to information disclosure or crash. |
Vulnerability description
Vulnerabilities found for PHP 7.2.24
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible SSH service. Starting Nmap ( https://nmap.org ) at 2025-08-17 05:30 EEST Nmap scan report for v9.vost.pw (5.181.1.131) Host is up (0.041s latency). rDNS record for 5.181.1.131: bgg.com
PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.7 (protocol 2.0) | ssh-auth-methods: | Supported authentication methods: | publickey | gssapi-keyex | gssapi-with-mic |_ password
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 1.17 seconds
Vulnerability description
We found that the SSH service with username/password authentication is publicly accessible. Network administrators often use remote administration protocols to control devices like switches, routers, and other essential systems. However, allowing these services to be accessible via the Internet can increase security risks, creating potential opportunities for attacks on the organization.
Risk description
Exposing this service online with username/password authentication can enable attackers to launch authentication attacks, like guessing login credentials, and potentially gaining unauthorized access. Vulnerabilities, such as unpatched software, protocol flaws, or backdoors could also be exploited. An example is the CVE-2024-3094 (XZ Utils Backdoor) vulnerability.
Recommendation
We recommend turning off SSH with username/password authentication access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the SSH service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, it is advisable to utilize SSH Public Key Authentication since it employs a key pair to verify the identity of a user or process.
Evidence
We managed to detect that PHP has reached the End-of-Life (EOL).
Version detected: 7.2.24 End-of-life date: 2020-11-30 Latest version for the cycle: 7.2.34 This release cycle (7.2) doesn't have long-term-support (LTS). The cycle was released on 2017-11-30 and its latest release date was 2020-10-01. The support ended on 2019-11-30.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
We managed to detect that PHP has reached the End-of-Life (EOL).
Version detected: 7.2.24 End-of-life date: 2020-11-30 Latest version for the cycle: 7.2.34 This release cycle (7.2) doesn't have long-term-support (LTS). The cycle was released on 2017-11-30 and its latest release date was 2020-10-01. The support ended on 2019-11-30.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
We managed to detect that nginx has reached the End-of-Life (EOL).
Version detected: 1.26.3 End-of-life date: 2025-04-23 Latest version for the cycle: 1.26.3 This release cycle (1.26) doesn't have long-term-support (LTS). The cycle was released on 2024-04-23 and its latest release date was 2025-02-05.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
We managed to detect that nginx has reached the End-of-Life (EOL).
Version detected: 1.26.3 End-of-life date: 2025-04-23 Latest version for the cycle: 1.26.3 This release cycle (1.26) doesn't have long-term-support (LTS). The cycle was released on 2024-04-23 and its latest release date was 2025-02-05.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
v9.vost.pw | A | IPv4 address | 5.181.1.131 |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Operating System | Accuracy |
---|---|
IBM InfoPrint 1754 printer | 92% |
Vulnerability description
OS Detection
Evidence
Software / Version | Category |
---|---|
DataLife Engine | CMS |
PHP 7.2.24 | Programming languages |
Nginx 1.26.3 | Web servers, Reverse proxies |
Apache HTTP Server | Web servers |
Magnific Popup | JavaScript libraries |
Liveinternet | Analytics |
jsDelivr | CDN |
jQuery | JavaScript libraries |
Google Hosted Libraries | CDN |
Google Font API | Font scripts |
Google Analytics UA | Analytics |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
DataLife Engine | CMS |
PHP 7.2.24 | Programming languages |
Nginx 1.26.3 | Web servers, Reverse proxies |
Apache HTTP Server | Web servers |
Magnific Popup | JavaScript libraries |
Liveinternet | Analytics |
jsDelivr | CDN |
jQuery | JavaScript libraries |
Google Hosted Libraries | CDN |
Google Font API | Font scripts |
Google Analytics UA | Analytics |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.