Vulnerability Scan Result

Title: | Honkasen säätiö |
Description: | No description found |
ip_address | 94.237.36.121 |
country | FI ![]() |
network_name | Upcloud Ltd |
asn | AS202053 |
21/tcp | ftp | ProFTPD - |
22/tcp | ssh | OpenSSH 9.2p1 Debian 2+deb12u7 |
25/tcp | smtp | Postfix smtpd - |
53/tcp | domain | - - |
80/tcp | http | nginx - |
110/tcp | pop3 | Courier pop3d - |
143/tcp | imap | Courier Imapd - |
443/tcp | https | nginx - |
465/tcp | smtp | Postfix smtpd - |
587/tcp | smtp | Postfix smtpd - |
993/tcp | imap | Courier Imapd - |
995/tcp | pop3 | Courier pop3d - |
8443/tcp | https | sw-cp-server - |
Software / Version | Category |
---|---|
Animate.css 3.5.2 | UI frameworks |
cdnjs | CDN |
Contact Form 7 5.9.8 | WordPress plugins, Form builders |
Elementor 3.23.4 | Page builders, WordPress plugins |
Hello Elementor 3.1.1 | WordPress themes |
jQuery Migrate 3.4.1 | JavaScript libraries |
Google Font API | Font scripts |
jQuery 2.2.4 | JavaScript libraries |
MySQL | Databases |
Nginx | Web servers, Reverse proxies |
PHP 8.3.26 | Programming languages |
WordPress 6.8.3 | CMS, Blogs |
Cloudflare | CDN |
RSS | Miscellaneous |
Web Application Vulnerabilities
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | Summary |
---|---|---|---|---|
CVE-2020-11023 | 6.9 | 0.21319 | 0.95417 | In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. |
CVE-2020-11022 | 6.9 | 0.22547 | 0.95568 | In jQuery versions greater than or equal to 1.2 and before 3.5.0, passing HTML from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. |
CVE-2019-11358 | 6.1 | 0.02942 | 0.85882 | jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles jQuery.extend(true, {}, ...) because of Object.prototype pollution. If an unsanitized source object contained an enumerable __proto__ property, it could extend the native Object.prototype. |
CVE-2015-9251 | 6.1 | 0.14527 | 0.94136 | jQuery before 3.0.0 is vulnerable to Cross-site Scripting (XSS) attacks when a cross-domain Ajax request is performed without the dataType option, causing text/javascript responses to be executed. |
Vulnerability description
Outdated or vulnerable software components include versions of server-side software that are no longer supported or have known, publicly disclosed vulnerabilities. Using outdated software significantly increases the attack surface of a system and may allow unauthorized access, data leaks, or service disruptions. Vulnerabilities in these components are often well-documented and actively exploited by attackers. Without security patches or vendor support, any weaknesses remain unmitigated, exposing the application to risks. In some cases, even after patching, the reported version may remain unchanged, requiring manual verification.
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system. Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed 'high' severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1035 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://honkasensaatio.fi/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Risk description
The risk is that lack of this header permits an attacker to force a victim user to initiate a clear-text HTTP connection to the server, thus opening the possibility to eavesdrop on the network traffic and extract sensitive information (e.g. session cookies).
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://honkasensaatio.fi/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://honkasensaatio.fi/ | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the X-Content-Type-Options
header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
Software / Version | Category |
---|---|
Animate.css 3.5.2 | UI frameworks |
cdnjs | CDN |
Contact Form 7 5.9.8 | WordPress plugins, Form builders |
Elementor 3.23.4 | Page builders, WordPress plugins |
Hello Elementor 3.1.1 | WordPress themes |
jQuery Migrate 3.4.1 | JavaScript libraries |
Google Font API | Font scripts |
jQuery 2.2.4 | JavaScript libraries |
MySQL | Databases |
Nginx | Web servers, Reverse proxies |
PHP 8.3.26 | Programming languages |
WordPress 6.8.3 | CMS, Blogs |
Cloudflare | CDN |
RSS | Miscellaneous |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://honkasensaatio.fi/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 |
|
Vulnerability description
We noticed that the target application is serving mixed content. This occurs when initial HTML is loaded over a secure HTTPS connection, but other resources (such as images, videos, stylesheets, scripts) are loaded over an insecure HTTP connection. This is called mixed content because both HTTP and HTTPS content are being loaded to display the same page, and the initial request was secure over HTTPS.
Risk description
The risk is that the insecurely loaded resources (HTTP) on an otherwise secure page (HTTPS) can be intercepted or manipulated by attackers, potentially leading to eavesdropping or content tampering.
Recommendation
Ensure that all external resources the page references are loaded using HTTPS.
Classification
CWE | CWE-311 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://honkasensaatio.fi/ | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy
HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
Vulnerability description
Website is accessible.
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://honkasensaatio.fi/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Email Address: toimisto@honkasensaatio.fi |
Vulnerability description
We noticed that this web application exposes email addresses, which might be unintended. While not inherently a vulnerability, this information could be leveraged in social engineering or spam related activities.
Risk description
The risk is that exposed email addresses within the application could be accessed by unauthorized parties. This could lead to privacy violations, spam, phishing attacks, or other forms of misuse.
Recommendation
Compartmentalize the application to have 'safe' areas where trust boundaries can be unambiguously drawn. Do not allow email addresses to go outside of the trust boundary, and always be careful when interfacing with a compartment outside of the safe area.
Classification
CWE | CWE-200 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://honkasensaatio.fi/index.php | GET | Query: rest_route=/oembed/1.0/embed url=https://honkasensaatio.fi/ Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Possible API endpoint found at |
Vulnerability description
We found API endpoints while crawling the given web application.
Risk description
These endpoints may represent an attack surface for malicious actors interested in API-specific vulnerabilities.
Recommendation
Use the API Scanner to perform a more thorough vulnerability check for these endpoints, if an API specification is present.
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Infrastructure Vulnerabilities
Evidence
We managed to detect a publicly accessible SSH service. Starting Nmap ( https://nmap.org ) at 2025-10-16 13:03 EEST Nmap scan report for honkasensaatio.fi (94.237.36.121) Host is up (0.040s latency). Other addresses for honkasensaatio.fi (not scanned): 2a04:3540:1000:310:54b9:a2ff:fe8e:31ec rDNS record for 94.237.36.121: fi27.hostaan.fi
PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 9.2p1 Debian 2+deb12u7 (protocol 2.0) | ssh-auth-methods: | Supported authentication methods: | publickey |_ password Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 1.35 seconds
Vulnerability description
We found that the SSH service with username/password authentication is publicly accessible. Network administrators often use remote administration protocols to control devices like switches, routers, and other essential systems. However, allowing these services to be accessible via the Internet can increase security risks, creating potential opportunities for attacks on the organization.
Risk description
Exposing this service online with username/password authentication can enable attackers to launch authentication attacks, like guessing login credentials, and potentially gaining unauthorized access. Vulnerabilities, such as unpatched software, protocol flaws, or backdoors could also be exploited. An example is the CVE-2024-3094 (XZ Utils Backdoor) vulnerability.
Recommendation
We recommend turning off SSH with username/password authentication access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the SSH service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, it is advisable to utilize SSH Public Key Authentication since it employs a key pair to verify the identity of a user or process.
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2020-11023 | 6.9 | 0.21319 | 0.95417 | Yes | In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. |
CVE-2020-11022 | 6.9 | 0.22547 | 0.95568 | No | In jQuery versions greater than or equal to 1.2 and before 3.5.0, passing HTML from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. |
CVE-2019-11358 | 6.1 | 0.02942 | 0.85882 | No | jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles jQuery.extend(true, {}, ...) because of Object.prototype pollution. If an unsanitized source object contained an enumerable __proto__ property, it could extend the native Object.prototype. |
CVE-2015-9251 | 6.1 | 0.14527 | 0.94136 | No | jQuery before 3.0.0 is vulnerable to Cross-site Scripting (XSS) attacks when a cross-domain Ajax request is performed without the dataType option, causing text/javascript responses to be executed. |
Vulnerability description
Vulnerabilities found for jQuery 2.2.4
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible File Transfer Protocol (FTP) service. PORT STATE SERVICE VERSION 21/tcp open ftp ProFTPD
Vulnerability description
We found that the File Transfer Protocol (FTP) service is publicly accessible. The FTP enables client systems to connect to upload and download files. Nonetheless, FTP lacks encryption for the data exchanged between the server and the client, leaving all transferred data exposed in plaintext.
Risk description
Exposing this service online can enable attackers to execute man-in-the-middle attacks, capturing sensitive user credentials and the contents of files because FTP operates without encryption. The entirety of the communication between the client and the server remains unsecured in plaintext. This acquired information could further facilitate additional attacks within the network.
Recommendation
We recommend turning off FTP access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the FTP service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing SFTP (Secure File Transfer Protocol) is recommended as this protocol employs encryption to secure data transfers.
Evidence
We managed to detect a publicly accessible Post Office Protocol (POP3) service. Starting Nmap ( https://nmap.org ) at 2025-10-16 13:03 EEST Nmap scan report for honkasensaatio.fi (94.237.36.121) Host is up (0.038s latency). Other addresses for honkasensaatio.fi (not scanned): 2a04:3540:1000:310:54b9:a2ff:fe8e:31ec rDNS record for 94.237.36.121: fi27.hostaan.fi
PORT STATE SERVICE VERSION 995/tcp open ssl/pop3 Courier pop3d |_pop3-capabilities: PIPELINING UIDL LOGIN-DELAY(10) LANG TOP UTF8(USER) SASL(LOGIN PLAIN) APOP IMPLEMENTATION(Courier Mail Server) USER Service Info: Host: localhost.localdomain
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 7.44 seconds
Vulnerability description
We found that the Post Office Protocol (POP3) service is publicly accessible and doesn’t include STARTTLS capability. Email clients use the Post Office Protocol (POP) to download emails for user accounts. Some POP servers are initially set up to operate over an unsecured protocol. When email clients download email content through this plaintext protocol, it can pose a substantial risk to the organization's network, especially depending on which user account is set to receive the emails.
Risk description
Exposing this service online can enable attackers to conduct man-in-the-middle attacks, thereby gaining access to sensitive user credentials and the contents of emails. Given that POP3 operates via a plaintext protocol, the entirety of the data exchanged between the client and server is left unencrypted. This critical information could then be leveraged in further attacks on the organization's network.
Recommendation
We recommend turning off POP3 access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the POP3 service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, activating STARTTLS capability (switching the connection to a secure communication) or utilizing Secure POP3 (POP3S) is recommended, as this protocol employs encryption.
Evidence
We checked 2056 selectors but found no DKIM records.
Vulnerability description
We found that no DKIM record was configured. When a DKIM (DomainKeys Identified Mail) record is not present for a domain, it means that outgoing emails from that domain are not cryptographically signed. DKIM is a critical component of email authentication, allowing recipients to verify that an email was genuinely sent from an authorized server and that the message has not been altered in transit. The absence of a DKIM record leaves the domain vulnerable to email spoofing and phishing attacks, as attackers can send fraudulent emails that appear to originate from the domain without any cryptographic verification.
Risk description
Without a DKIM record, recipients have no way of verifying the integrity or authenticity of emails sent from the domain. This increases the likelihood of phishing and spoofing attacks, where malicious actors impersonate the domain to send fraudulent emails. This can lead to significant security incidents, such as credential theft, financial fraud, or the distribution of malware. Additionally, many email providers use DKIM as part of their spam and reputation filters, meaning that emails from a domain without DKIM may be flagged as spam or rejected, impacting the deliverability and reputation of legitimate emails.
Recommendation
We recommend implementing DKIM for your domain to enhance email security and protect your brand from email-based attacks. Generate a DKIM key pair (public and private keys), publish the public key in the DNS under the appropriate selector, and configure your email servers to sign outgoing messages using the private key. Ensure that the DKIM key length is at least 1024 bits to prevent cryptographic attacks. Regularly monitor DKIM signatures to ensure the system is functioning correctly and update keys periodically to maintain security.
Evidence
We managed to detect that jQuery has reached the End-of-Life (EOL).
Version detected: 2.2.4 Latest version for the cycle: 2.2.4 This release cycle (2) doesn't have long-term-support (LTS). The cycle was released on 2013-04-18 and its latest release date was 2016-05-20.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
honkasensaatio.fi | TXT | Text record | "MS=ms88541512" |
Vulnerability description
We found that the target server has no DMARC policy configured. A missing DMARC (Domain-based Message Authentication, Reporting, and Conformance) policy means that the domain is not enforcing any DMARC policies to protect against email spoofing and phishing attacks. Without DMARC, even if SPF (Sender Policy Framework) or DKIM (DomainKeys Identified Mail) are configured, there is no mechanism to tell receiving email servers how to handle messages that fail authentication. This leaves the domain vulnerable to abuse, such as email spoofing and impersonation.
Risk description
Without a DMARC policy, your domain is highly vulnerable to email spoofing, allowing attackers to impersonate your brand and send fraudulent emails that appear legitimate. This can lead to phishing attacks targeting your customers, employees, or partners, potentially resulting in stolen credentials, financial loss, or unauthorized access to sensitive systems. Additionally, repeated spoofing attempts can severely damage your brand's reputation, as recipients may lose trust in communications from your domain, associating your brand with malicious activity. The absence of DMARC also prevents you from monitoring and mitigating email-based attacks, leaving your domain exposed to ongoing abuse.
Recommendation
We recommend implementing a DMARC policy for your domain. Start by configuring a DMARC record with a policy of p=none, which will allow you to monitor email flows without impacting legitimate emails. This initial setup helps identify how emails from your domain are being processed by recipient servers. Once you’ve verified that legitimate emails are passing SPF and DKIM checks, you can gradually enforce stricter policies like p=quarantine or p=reject to protect against spoofing and phishing attacks. Additionally, include rua and ruf email addresses in the DMARC record to receive aggregate and forensic reports. These reports will provide valuable insights into authentication failures and help you detect any spoofing attempts.
Evidence
We found insecure DNS cookie usage on the following nameservers: ns2.z.fi, ns1.z.fi
Vulnerability description
We found that the server does not implement DNS Cookies or uses them insecurely. DNS Cookies help prevent DNS-based attacks, such as spoofing and amplification attacks.
Risk description
The risk exists because without DNS Cookies, the server is vulnerable to DNS spoofing and amplification attacks. Attackers can manipulate responses or use the server in distributed denial-of-service (DDoS) attacks, compromising network availability and security.
Recommendation
We recommend enabling DNS Cookies to prevent spoofed DNS responses. Ensure proper cookie validation is implemented to mitigate DNS amplification attacks. Regularly update DNS servers to support the latest DNS security features.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
honkasensaatio.fi | SPF | Sender Policy Framework | "v=spf1 mx ip4:212.68.4.116 a:fi27.hostaan.fi include:spf.protection.outlook.com -all" |
Evidence
Software / Version | Category |
---|---|
WordPress 6.8.3 | CMS, Blogs |
MySQL | Databases |
PHP 8.3.26 | Programming languages |
Contact Form 7 5.9.8 | WordPress plugins, Form builders |
Nginx | Web servers, Reverse proxies |
Hello Elementor 3.1.1 | WordPress themes |
Elementor 3.23.4 | Page builders, WordPress plugins |
Cloudflare | CDN |
jQuery Migrate 3.4.1 | JavaScript libraries |
cdnjs | CDN |
jQuery 2.2.4 | JavaScript libraries |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
Plesk | Hosting panels |
Nginx | Web servers, Reverse proxies |
RequireJS | JavaScript frameworks |
Prototype | JavaScript frameworks |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
honkasensaatio.fi | A | IPv4 address | 94.237.36.121 |
honkasensaatio.fi | NS | Name server | ns1.otaverkko.fi |
honkasensaatio.fi | NS | Name server | ns2.z.fi |
honkasensaatio.fi | NS | Name server | ns1.z.fi |
honkasensaatio.fi | NS | Name server | ns2.otaverkko.fi |
honkasensaatio.fi | MX | Mail server | 0 honkasensaatio-fi.mail.protection.outlook.com |
honkasensaatio.fi | SOA | Start of Authority | ns1.otaverkko.fi. hostmaster.otaverkko.fi. 2024100203 10800 3600 604800 3600 |
honkasensaatio.fi | AAAA | IPv6 address | 2a04:3540:1000:310:54b9:a2ff:fe8e:31ec |
honkasensaatio.fi | TXT | Text record | "MS=ms88541512" |
honkasensaatio.fi | SPF | Sender Policy Framework | "v=spf1 mx ip4:212.68.4.116 a:fi27.hostaan.fi include:spf.protection.outlook.com -all" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Operating System | Accuracy |
---|---|
Linux 5.4 | 100% |
Vulnerability description
OS Detection