Vulnerability Scan Result

| Title: | Charter Bus Rentals in Abilene, Texas | 30-Second Online Price Quotes |
| Description: | No description found |
| ip_address | 18.226.248.11 |
| country | US |
| network_name | Amazon Inc |
| asn | AS16509 |
22/tcp | ssh | OpenSSH 9.6p1 Ubuntu 3ubuntu13.11 |
80/tcp | http | Apache httpd 2.4.58 |
443/tcp | https | Apache httpd 2.4.58 |
| Software / Version | Category |
|---|---|
| Google Font API | Font scripts |
| Apache HTTP Server 2.4.58 | Web servers |
| Magento | Ecommerce |
| MySQL | Databases |
| Open Graph | Miscellaneous |
| PHP | Programming languages |
| Ubuntu | Operating systems |
Web Application Vulnerabilities
Evidence
| CVE | CVSS | EPSS Score | EPSS Percentile | Summary |
|---|---|---|---|---|
| CVE-2024-38476 | 9.8 | 0.02697 | 0.85336 | Vulnerability in core of Apache HTTP Server 2.4.59 and earlier are vulnerably to information disclosure, SSRF or local script execution via backend applications whose response headers are malicious or exploitable. Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
| CVE-2024-38474 | 9.8 | 0.0071 | 0.71497 | Substitution encoding issue in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows attacker to execute scripts in directories permitted by the configuration but not directly reachable by any URL or source disclosure of scripts meant to only to be executed as CGI. Users are recommended to upgrade to version 2.4.60, which fixes this issue. Some RewriteRules that capture and substitute unsafely will now fail unless rewrite flag "UnsafeAllow3F" is specified. |
| CVE-2025-23048 | 9.1 | 0.00086 | 0.25753 | In some mod_ssl configurations on Apache HTTP Server 2.4.35 through to 2.4.63, an access control bypass by trusted clients is possible using TLS 1.3 session resumption. Configurations are affected when mod_ssl is configured for multiple virtual hosts, with each restricted to a different set of trusted client certificates (for example with a different SSLCACertificateFile/Path setting). In such a case, a client trusted to access one virtual host may be able to access another virtual host, if SSLStrictSNIVHostCheck is not enabled in either virtual host. |
| CVE-2024-38475 | 9.1 | 0.9375 | 0.99841 | Improper escaping of output in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows an attacker to map URLs to filesystem locations that are permitted to be served by the server but are not intentionally/directly reachable by any URL, resulting in code execution or source code disclosure. Substitutions in server context that use a backreferences or variables as the first segment of the substitution are affected. Some unsafe RewiteRules will be broken by this change and the rewrite flag "UnsafePrefixStat" can be used to opt back in once ensuring the substitution is appropriately constrained. |
| CVE-2024-38473 | 8.1 | 0.86862 | 0.99388 | Encoding problem in mod_proxy in Apache HTTP Server 2.4.59 and earlier allows request URLs with incorrect encoding to be sent to backend services, potentially bypassing authentication via crafted requests. Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
Vulnerability description
Outdated or vulnerable software components include versions of server-side software that are no longer supported or have known, publicly disclosed vulnerabilities. Using outdated software significantly increases the attack surface of a system and may allow unauthorized access, data leaks, or service disruptions. Vulnerabilities in these components are often well-documented and actively exploited by attackers. Without security patches or vendor support, any weaknesses remain unmitigated, exposing the application to risks. In some cases, even after patching, the reported version may remain unchanged, requiring manual verification.
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system. Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed 'high' severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
| CWE | CWE-1035 |
| OWASP Top 10 - 2017 | |
| OWASP Top 10 - 2021 |
Evidence
Vulnerability description
We found that the target application's web server presents an SSL/TLS certificate that is not trusted by web browsers. This issue typically arises when the server uses a self-signed certificate, a certificate from an untrusted authority, or a certificate that has expired or is invalid for other reasons. The lack of a trusted certificate makes it challenging for users to verify the authenticity of the server, undermining the security of the SSL/TLS connection.
Risk description
The risk is that an attacker could easily mount a man-in-the-middle attack in order to sniff the SSL communication by presenting the user a fake SSL certificate.
Recommendation
We recommend you to configure a trusted SSL certificate for the web server. Examples of how to configure SSL for various servers for Apache and Nginx are referenced.
Evidence
| URL | Evidence |
|---|---|
| https://leandercoachbusservice.com/ | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the X-Content-Type-Options header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
| CWE | CWE-693 |
| OWASP Top 10 - 2017 | |
| OWASP Top 10 - 2021 |
Evidence
| URL | Evidence |
|---|---|
| https://leandercoachbusservice.com/ | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
| CWE | CWE-693 |
| OWASP Top 10 - 2017 | |
| OWASP Top 10 - 2021 |
Evidence
| URL | Evidence |
|---|---|
| https://leandercoachbusservice.com/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
| CWE | CWE-693 |
| OWASP Top 10 - 2017 | |
| OWASP Top 10 - 2021 |
Evidence
| Software / Version | Category |
|---|---|
| Google Font API | Font scripts |
| Apache HTTP Server 2.4.58 | Web servers |
| Magento | Ecommerce |
| MySQL | Databases |
| Open Graph | Miscellaneous |
| PHP | Programming languages |
| Ubuntu | Operating systems |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
| URL | Evidence |
|---|---|
| https://leandercoachbusservice.com/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Risk description
The risk is that lack of this header permits an attacker to force a victim user to initiate a clear-text HTTP connection to the server, thus opening the possibility to eavesdrop on the network traffic and extract sensitive information (e.g. session cookies).
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
| CWE | CWE-693 |
| OWASP Top 10 - 2017 | |
| OWASP Top 10 - 2021 |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Evidence
Vulnerability description
Website is accessible.
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Infrastructure Vulnerabilities
Evidence
| CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
|---|---|---|---|---|---|
| CVE-2024-38476 | 9.8 | 0.02697 | 0.85336 | No | Vulnerability in core of Apache HTTP Server 2.4.59 and earlier are vulnerably to information disclosure, SSRF or local script execution via backend applications whose response headers are malicious or exploitable. Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
| CVE-2024-38474 | 9.8 | 0.0071 | 0.71497 | No | Substitution encoding issue in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows attacker to execute scripts in directories permitted by the configuration but not directly reachable by any URL or source disclosure of scripts meant to only to be executed as CGI. Users are recommended to upgrade to version 2.4.60, which fixes this issue. Some RewriteRules that capture and substitute unsafely will now fail unless rewrite flag "UnsafeAllow3F" is specified. |
| CVE-2025-23048 | 9.1 | 0.00086 | 0.25753 | No | In some mod_ssl configurations on Apache HTTP Server 2.4.35 through to 2.4.63, an access control bypass by trusted clients is possible using TLS 1.3 session resumption. Configurations are affected when mod_ssl is configured for multiple virtual hosts, with each restricted to a different set of trusted client certificates (for example with a different SSLCACertificateFile/Path setting). In such a case, a client trusted to access one virtual host may be able to access another virtual host, if SSLStrictSNIVHostCheck is not enabled in either virtual host. |
| CVE-2024-38475 | 9.1 | 0.9375 | 0.99841 | Yes | Improper escaping of output in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows an attacker to map URLs to filesystem locations that are permitted to be served by the server but are not intentionally/directly reachable by any URL, resulting in code execution or source code disclosure. Substitutions in server context that use a backreferences or variables as the first segment of the substitution are affected. Some unsafe RewiteRules will be broken by this change and the rewrite flag "UnsafePrefixStat" can be used to opt back in once ensuring the substitution is appropriately constrained. |
| CVE-2024-38473 | 8.1 | 0.86862 | 0.99388 | No | Encoding problem in mod_proxy in Apache HTTP Server 2.4.59 and earlier allows request URLs with incorrect encoding to be sent to backend services, potentially bypassing authentication via crafted requests. Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
Vulnerability description
Vulnerabilities found for Apache HTTP Server 2.4.58
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
| CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
|---|---|---|---|---|---|
| CVE-2024-38476 | 9.8 | 0.02697 | 0.85336 | No | Vulnerability in core of Apache HTTP Server 2.4.59 and earlier are vulnerably to information disclosure, SSRF or local script execution via backend applications whose response headers are malicious or exploitable. Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
| CVE-2024-38474 | 9.8 | 0.0071 | 0.71497 | No | Substitution encoding issue in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows attacker to execute scripts in directories permitted by the configuration but not directly reachable by any URL or source disclosure of scripts meant to only to be executed as CGI. Users are recommended to upgrade to version 2.4.60, which fixes this issue. Some RewriteRules that capture and substitute unsafely will now fail unless rewrite flag "UnsafeAllow3F" is specified. |
| CVE-2025-23048 | 9.1 | 0.00086 | 0.25753 | No | In some mod_ssl configurations on Apache HTTP Server 2.4.35 through to 2.4.63, an access control bypass by trusted clients is possible using TLS 1.3 session resumption. Configurations are affected when mod_ssl is configured for multiple virtual hosts, with each restricted to a different set of trusted client certificates (for example with a different SSLCACertificateFile/Path setting). In such a case, a client trusted to access one virtual host may be able to access another virtual host, if SSLStrictSNIVHostCheck is not enabled in either virtual host. |
| CVE-2024-38475 | 9.1 | 0.9375 | 0.99841 | Yes | Improper escaping of output in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows an attacker to map URLs to filesystem locations that are permitted to be served by the server but are not intentionally/directly reachable by any URL, resulting in code execution or source code disclosure. Substitutions in server context that use a backreferences or variables as the first segment of the substitution are affected. Some unsafe RewiteRules will be broken by this change and the rewrite flag "UnsafePrefixStat" can be used to opt back in once ensuring the substitution is appropriately constrained. |
| CVE-2024-38473 | 8.1 | 0.86862 | 0.99388 | No | Encoding problem in mod_proxy in Apache HTTP Server 2.4.59 and earlier allows request URLs with incorrect encoding to be sent to backend services, potentially bypassing authentication via crafted requests. Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
Vulnerability description
Vulnerabilities found for Apache HTTP Server 2.4.58
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
| Domain Queried | DNS Record Type | Description | Value |
|---|---|---|---|
| _dmarc.leandercoachbusservice.com | TXT | Text record | "v=DMARC1; p=reject; adkim=r; aspf=r; rua=mailto:dmarc_rua@onsecureserver.net;" |
Vulnerability description
We found that the DMARC record for the domain is not configured with sp policy, meaning that no policy is enforced for subdomains. When a DMARC record does not include a subdomain policy (sp directive), subdomains are not explicitly covered by the main domain's DMARC policy. This means that emails sent from subdomains (e.g., sub.example.com) may not be subject to the same DMARC enforcement as the main domain (example.com). As a result, attackers could potentially spoof emails from subdomains without being blocked or flagged, even if the main domain has a strict DMARC policy.
Risk description
Without a subdomain policy (sp directive) in the DMARC record, subdomains are not protected by the same DMARC enforcement as the main domain, leaving them vulnerable to spoofing attacks. This inconsistency can be exploited by attackers to send phishing emails from subdomains, undermining the organization’s overall email security.
Recommendation
To mitigate the risk, we recommend configuring the DMARC record with a subdomain policy by adding the sp=reject or sp=quarantine directive. This will extend DMARC enforcement to all subdomains, preventing spoofing attempts and maintaining consistent security across both the main domain and its subdomains.
Evidence
We found insecure DNS cookie usage on the following nameservers: ns07.domaincontrol.com, ns08.domaincontrol.com
Vulnerability description
We found that the server does not implement DNS Cookies or uses them insecurely. DNS Cookies help prevent DNS-based attacks, such as spoofing and amplification attacks.
Risk description
The risk exists because without DNS Cookies, the server is vulnerable to DNS spoofing and amplification attacks. Attackers can manipulate responses or use the server in distributed denial-of-service (DDoS) attacks, compromising network availability and security.
Recommendation
We recommend enabling DNS Cookies to prevent spoofed DNS responses. Ensure proper cookie validation is implemented to mitigate DNS amplification attacks. Regularly update DNS servers to support the latest DNS security features.
Evidence
| Domain Queried | DNS Record Type | Description | Value |
|---|---|---|---|
| _dmarc.leandercoachbusservice.com | TXT | Text record | "v=DMARC1; p=reject; adkim=r; aspf=r; rua=mailto:dmarc_rua@onsecureserver.net;" |
Vulnerability description
We found that the DMARC record for the domain is not configured with ruf tag. A missing ruf (forensic reporting) tag in a DMARC record indicates that the domain owner has not enabled the collection of detailed failure reports. Forensic reports provide valuable insights into specific instances where emails fail DMARC authentication. Without the ruf tag, the domain administrator loses the ability to receive and analyze these reports, making it difficult to investigate individual email failures or identify targeted phishing or spoofing attacks that may be exploiting weaknesses in the email authentication setup.
Risk description
Without forensic reports (ruf), domain owners have limited visibility into the specifics of failed DMARC validation. This means potential malicious activity, such as email spoofing or phishing attempts, might go unnoticed until they result in more significant security breaches or reputational damage. Forensic reports allow for quick response to email abuses by providing detailed information about the failure, including the header information of the emails involved. The absence of this data hampers an organization's ability to identify and mitigate threats targeting its domain, increasing the risk of ongoing spoofing and fraud.
Recommendation
We recommend configuring the ruf tag in the DMARC record. This tag specifies where forensic reports should be sent, providing the domain owner with detailed data on DMARC validation failures. Forensic reports allow administrators to analyze why certain emails failed authentication, making it easier to fine-tune DMARC policies or address potential vulnerabilities. Ensure that the ruf email address belongs to a secure and trusted location capable of handling sensitive email data.
Evidence
| Operating System | Accuracy |
|---|---|
| Linux 2.6.32 | 93% |
Vulnerability description
OS Detection
Evidence
| Software / Version | Category |
|---|---|
| Ubuntu | Operating systems |
| Apache HTTP Server 2.4.58 | Web servers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
| Domain Queried | DNS Record Type | Description | Value |
|---|---|---|---|
| leandercoachbusservice.com | A | IPv4 address | 18.226.248.11 |
| leandercoachbusservice.com | NS | Name server | ns07.domaincontrol.com |
| leandercoachbusservice.com | NS | Name server | ns08.domaincontrol.com |
| leandercoachbusservice.com | SOA | Start of Authority | ns07.domaincontrol.com. dns.jomax.net. 2025103100 28800 7200 604800 600 |
| _dmarc.leandercoachbusservice.com | TXT | Text record | "v=DMARC1; p=reject; adkim=r; aspf=r; rua=mailto:dmarc_rua@onsecureserver.net;" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
| Software / Version | Category |
|---|---|
| Magento | Ecommerce |
| MySQL | Databases |
| PHP | Programming languages |
| Ubuntu | Operating systems |
| Apache HTTP Server 2.4.58 | Web servers |
| Google Font API | Font scripts |
| Open Graph | Miscellaneous |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
