Vulnerability Scan Result

| Title: | Página Principal | campus |
| Description: | No description found |
| ip_address | 65.99.205.141 |
| country | US |
| network_name | TierPoint, LLC |
| asn | AS17378 |
21/tcp | ftp | Pure-FTPd - |
25/tcp | smtp | - - |
53/tcp | domain | - - |
80/tcp | http | Apache httpd - |
110/tcp | pop3 | Dovecot pop3d - |
143/tcp | imap | Dovecot imapd - |
443/tcp | https | Apache httpd - |
587/tcp | smtp | Exim smtpd 4.99.1 |
993/tcp | imap | Dovecot imapd - |
995/tcp | pop3 | Dovecot pop3d - |
2080/tcp | https | cPanel httpd - |
2082/tcp | http | OpenResty web app server 1.27.1.1 |
2083/tcp | https | nginx - |
3306/tcp | mysql | - - |
| Software / Version | Category |
|---|---|
| YUI 3.18.1 | JavaScript libraries |
| core-js 3.15.0 | JavaScript libraries |
| Google Analytics GA4 | Analytics |
| Apache HTTP Server | Web servers |
| jQuery 3.7.1 | JavaScript libraries |
| Moodle | LMS |
| PHP 8.1.34 | Programming languages |
| RequireJS | JavaScript frameworks |
| Google Tag Manager | Tag managers |
| jsDelivr | CDN |
| MathJax 2.7.9 | JavaScript graphics |
| HSTS | Security |
Web Application Vulnerabilities
Evidence
| CVE | CVSS | EPSS Score | EPSS Percentile | Summary |
|---|---|---|---|---|
| CVE-2023-39663 | 7.5 | 0.00188 | 0.40719 | Mathjax up to v2.7.9 was discovered to contain two Regular expression Denial of Service (ReDoS) vulnerabilities in MathJax.js via the components pattern and markdownPattern. NOTE: the vendor disputes this because the regular expressions are not applied to user input; thus, there is no risk. |
Vulnerability description
Outdated or vulnerable software components include versions of server-side software that are no longer supported or have known, publicly disclosed vulnerabilities. Using outdated software significantly increases the attack surface of a system and may allow unauthorized access, data leaks, or service disruptions. Vulnerabilities in these components are often well-documented and actively exploited by attackers. Without security patches or vendor support, any weaknesses remain unmitigated, exposing the application to risks. In some cases, even after patching, the reported version may remain unchanged, requiring manual verification.
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system. Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed 'high' severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
| CWE | CWE-1035 |
| OWASP Top 10 - 2017 | |
| OWASP Top 10 - 2021 |
Evidence
| URL | Cookie Name | Evidence |
|---|---|---|
| https://campus.uniem.com.mx/ | MoodleSession | The server responded with Set-Cookie header(s) that does not specify the HttpOnly flag: Set-Cookie: MoodleSession=dplfnpi3172k4s22mlnooqn8d3 |
Vulnerability description
We found that a cookie has been set without the HttpOnly flag, which means it can be accessed by potentially malicious JavaScript code running inside the web page. The root cause for this usually revolves around misconfigurations in the code or server settings.
Risk description
The risk is that an attacker who injects malicious JavaScript code on the page (e.g. by using an XSS attack) can access the cookie and can send it to another site. In case of a session cookie, this could lead to session hijacking.
Recommendation
Ensure that the HttpOnly flag is set for all cookies.
Classification
| CWE | CWE-1004 |
| OWASP Top 10 - 2017 | |
| OWASP Top 10 - 2021 |
Evidence
| URL | Evidence |
|---|---|
| https://campus.uniem.com.mx/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
| CWE | CWE-693 |
| OWASP Top 10 - 2017 | |
| OWASP Top 10 - 2021 |
Evidence
| Software / Version | Category |
|---|---|
| YUI 3.18.1 | JavaScript libraries |
| core-js 3.15.0 | JavaScript libraries |
| Google Analytics GA4 | Analytics |
| Apache HTTP Server | Web servers |
| jQuery 3.7.1 | JavaScript libraries |
| Moodle | LMS |
| PHP 8.1.34 | Programming languages |
| RequireJS | JavaScript frameworks |
| Google Tag Manager | Tag managers |
| jsDelivr | CDN |
| MathJax 2.7.9 | JavaScript graphics |
| HSTS | Security |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
| URL | Evidence |
|---|---|
| https://campus.uniem.com.mx/calendar/view.php |
|
Vulnerability description
We have discovered that the target application presents a login interface that could be a potential target for attacks. While login interfaces are standard for user authentication, they can become vulnerabilities if not properly secured.
Risk description
The risk is that an attacker could use this interface to mount brute force attacks against known passwords and usernames combinations leaked throughout the web.
Recommendation
Ensure each interface is not bypassable using common knowledge of the application or leaked credentials using occasional password audits.
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Infrastructure Vulnerabilities
Evidence
We managed to detect a publicly accessible Post Office Protocol (POP3) service. Starting Nmap ( https://nmap.org ) at 2026-02-03 09:35 EET Nmap scan report for campus.uniem.com.mx (65.99.205.141) Host is up. rDNS record for 65.99.205.141: svgtl60.cloud-mx-ns.net
PORT STATE SERVICE VERSION 110/tcp filtered pop3
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 3.78 seconds
Vulnerability description
We found that the Post Office Protocol (POP3) service is publicly accessible and doesn’t include STARTTLS capability. Email clients use the Post Office Protocol (POP) to download emails for user accounts. Some POP servers are initially set up to operate over an unsecured protocol. When email clients download email content through this plaintext protocol, it can pose a substantial risk to the organization's network, especially depending on which user account is set to receive the emails.
Risk description
Exposing this service online can enable attackers to conduct man-in-the-middle attacks, thereby gaining access to sensitive user credentials and the contents of emails. Given that POP3 operates via a plaintext protocol, the entirety of the data exchanged between the client and server is left unencrypted. This critical information could then be leveraged in further attacks on the organization's network.
Recommendation
We recommend turning off POP3 access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the POP3 service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, activating STARTTLS capability (switching the connection to a secure communication) or utilizing Secure POP3 (POP3S) is recommended, as this protocol employs encryption.
Evidence
We managed to detect a publicly accessible Post Office Protocol (POP3) service. Starting Nmap ( https://nmap.org ) at 2026-02-03 09:35 EET Nmap scan report for campus.uniem.com.mx (65.99.205.141) Host is up. rDNS record for 65.99.205.141: svgtl60.cloud-mx-ns.net
PORT STATE SERVICE VERSION 995/tcp filtered pop3s
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 3.90 seconds
Vulnerability description
We found that the Post Office Protocol (POP3) service is publicly accessible and doesn’t include STARTTLS capability. Email clients use the Post Office Protocol (POP) to download emails for user accounts. Some POP servers are initially set up to operate over an unsecured protocol. When email clients download email content through this plaintext protocol, it can pose a substantial risk to the organization's network, especially depending on which user account is set to receive the emails.
Risk description
Exposing this service online can enable attackers to conduct man-in-the-middle attacks, thereby gaining access to sensitive user credentials and the contents of emails. Given that POP3 operates via a plaintext protocol, the entirety of the data exchanged between the client and server is left unencrypted. This critical information could then be leveraged in further attacks on the organization's network.
Recommendation
We recommend turning off POP3 access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the POP3 service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, activating STARTTLS capability (switching the connection to a secure communication) or utilizing Secure POP3 (POP3S) is recommended, as this protocol employs encryption.
Evidence
We managed to detect a publicly accessible File Transfer Protocol (FTP) service. PORT STATE SERVICE VERSION 21/tcp open ftp Pure-FTPd
Vulnerability description
We found that the File Transfer Protocol (FTP) service is publicly accessible. The FTP enables client systems to connect to upload and download files. Nonetheless, FTP lacks encryption for the data exchanged between the server and the client, leaving all transferred data exposed in plaintext.
Risk description
Exposing this service online can enable attackers to execute man-in-the-middle attacks, capturing sensitive user credentials and the contents of files because FTP operates without encryption. The entirety of the communication between the client and the server remains unsecured in plaintext. This acquired information could further facilitate additional attacks within the network.
Recommendation
We recommend turning off FTP access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the FTP service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing SFTP (Secure File Transfer Protocol) is recommended as this protocol employs encryption to secure data transfers.
Evidence
| Software / Version | Category |
|---|---|
| Nginx | Web servers, Reverse proxies |
| OpenResty 1.27.1.1 | Web servers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
| Operating System | Accuracy |
|---|---|
| Linux 4.0 | 94% |
Vulnerability description
OS Detection
Evidence
| Software / Version | Category |
|---|---|
| Nginx | Web servers, Reverse proxies |
| OpenResty 1.27.1.1 | Web servers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
| Domain Queried | DNS Record Type | Description | Value |
|---|---|---|---|
| campus.uniem.com.mx | A | IPv4 address | 65.99.205.141 |
| campus.uniem.com.mx | SPF | Sender Policy Framework | "v=spf1 +a +mx +ip4:65.99.205.141 include:spf.antispamcloud.com +include:spf.anti-spam-premium.com -all" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
| Domain Queried | DNS Record Type | Description | Value |
|---|---|---|---|
| campus.uniem.com.mx | SPF | Sender Policy Framework | "v=spf1 +a +mx +ip4:65.99.205.141 include:spf.antispamcloud.com +include:spf.anti-spam-premium.com -all" |
