Vulnerability Scan Result

ip_address | 108.163.242.106 |
country | US ![]() |
network_name | Singlehop LLC |
asn | AS32475 |
21/tcp | ftp | Pure-FTPd - |
22/tcp | ssh | OpenSSH 8 |
25/tcp | smtp | - - |
80/tcp | http | - - |
110/tcp | pop3 | Dovecot pop3d - |
143/tcp | imap | Dovecot imapd - |
443/tcp | https | - - |
465/tcp | smtp | Exim smtpd 4.98.2 |
587/tcp | smtp | Exim smtpd 4.98.2 |
993/tcp | imap | Dovecot imapd - |
995/tcp | pop3 | Dovecot pop3d - |
2082/tcp | http | - - |
2083/tcp | https | - - |
2086/tcp | http | - - |
2087/tcp | https | - - |
3306/tcp | mysql | - - |
5666/tcp | tcpwrapped | - - |
8888/tcp | http | - - |
Software / Version | Category |
---|---|
Automatic.css | UI frameworks, WordPress plugins |
Bricks | Page builders, WordPress themes |
HTTP/3 | Miscellaneous |
jQuery 3.7.1 | JavaScript libraries |
MySQL | Databases |
PHP 8.1.32 | Programming languages |
Splide | JavaScript libraries |
Priority Hints | Performance |
WordPress 6.8.2 | CMS, Blogs |
Lodash 1.13.7 | JavaScript libraries |
HSTS | Security |
RSS | Miscellaneous |
Web Application Vulnerabilities
Evidence
URL | Evidence |
---|---|
https://home.hmt3design.com/ | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy
HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Evidence
URL | Evidence |
---|---|
https://home.hmt3design.com/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
Software / Version | Category |
---|---|
Automatic.css | UI frameworks, WordPress plugins |
Bricks | Page builders, WordPress themes |
HTTP/3 | Miscellaneous |
jQuery 3.7.1 | JavaScript libraries |
MySQL | Databases |
PHP 8.1.32 | Programming languages |
Splide | JavaScript libraries |
Priority Hints | Performance |
WordPress 6.8.2 | CMS, Blogs |
Lodash 1.13.7 | JavaScript libraries |
HSTS | Security |
RSS | Miscellaneous |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://home.hmt3design.com/wp-content/themes/bricks | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Response has an internal server error status code: 500 |
Vulnerability description
We noticed that the target application's website does not properly handle or incorrectly manages exceptional conditions like Internal Server Errors. These errors can reveal sensitive information through their error messages. For instance, an error message could inadvertently disclose system paths or private application details.
Risk description
The risk exists that attackers could utilize information revealed in Internal Server Error messages to mount more targeted and effective attacks. Detailed error messages could, for example, expose a path traversal weakness (CWE-22) or other exploitable system vulnerabilities.
Recommendation
Ensure that error messages only contain minimal details that are useful to the intended audience, and nobody else. The messages need to strike the balance between being too cryptic and not being cryptic enough. They should not necessarily reveal the methods that were used to determine the error. Such detailed information can be used to refine the original attack to increase the chances of success. If errors must be tracked in some detail, capture them in log messages - but consider what could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive information such as passwords in any form. Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a username is valid or not.
Classification
CWE | CWE-209 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
Vulnerability description
Website is accessible.
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Infrastructure Vulnerabilities
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2023-38408 | 9.8 | 0.61466 | 0.98218 | No | The PKCS#11 feature in ssh-agent in OpenSSH before 9.3p2 has an insufficiently trustworthy search path, leading to remote code execution if an agent is forwarded to an attacker-controlled system. (Code in /usr/lib is not necessarily safe for loading into ssh-agent.) NOTE: this issue exists because of an incomplete fix for CVE-2016-10009. |
CVE-2025-26465 | 6.8 | 0.56435 | 0.97975 | No | A vulnerability was found in OpenSSH when the VerifyHostKeyDNS option is enabled. A machine-in-the-middle attack can be performed by a malicious machine impersonating a legit server. This issue occurs due to how OpenSSH mishandles error codes in specific conditions when verifying the host key. For an attack to be considered successful, the attacker needs to manage to exhaust the client's memory resource first, turning the attack complexity high. |
CVE-2020-15778 | 6.8 | 0.66112 | 0.98416 | No | scp in OpenSSH through 8.3p1 allows command injection in the scp.c toremote function, as demonstrated by backtick characters in the destination argument. NOTE: the vendor reportedly has stated that they intentionally omit validation of "anomalous argument transfers" because that could "stand a great chance of breaking existing workflows." |
CVE-2023-51385 | 6.5 | 0.096 | 0.92499 | No | In ssh in OpenSSH before 9.6, OS command injection might occur if a user name or host name has shell metacharacters, and this name is referenced by an expansion token in certain situations. For example, an untrusted Git repository can have a submodule with shell metacharacters in a user name or host name. |
CVE-2023-48795 | 5.9 | 0.6127 | 0.98209 | No | The SSH transport protocol with certain OpenSSH extensions, found in OpenSSH before 9.6 and other products, allows remote attackers to bypass integrity checks such that some packets are omitted (from the extension negotiation message), and a client and server may consequently end up with a connection for which some security features have been downgraded or disabled, aka a Terrapin attack. This occurs because the SSH Binary Packet Protocol (BPP), implemented by these extensions, mishandles the handshake phase and mishandles use of sequence numbers. For example, there is an effective attack against SSH's use of ChaCha20-Poly1305 (and CBC with Encrypt-then-MAC). The bypass occurs in chacha20-poly1305@openssh.com and (if CBC is used) the -etm@openssh.com MAC algorithms. This also affects Maverick Synergy Java SSH API before 3.1.0-SNAPSHOT, Dropbear through 2022.83, Ssh before 5.1.1 in Erlang/OTP, PuTTY before 0.80, AsyncSSH before 2.14.2, golang.org/x/crypto before 0.17.0, libssh before 0.10.6, libssh2 through 1.11.0, Thorn Tech SFTP Gateway before 3.4.6, Tera Term before 5.1, Paramiko before 3.4.0, jsch before 0.2.15, SFTPGo before 2.5.6, Netgate pfSense Plus through 23.09.1, Netgate pfSense CE through 2.7.2, HPN-SSH through 18.2.0, ProFTPD before 1.3.8b (and before 1.3.9rc2), ORYX CycloneSSH before 2.3.4, NetSarang XShell 7 before Build 0144, CrushFTP before 10.6.0, ConnectBot SSH library before 2.2.22, Apache MINA sshd through 2.11.0, sshj through 0.37.0, TinySSH through 20230101, trilead-ssh2 6401, LANCOM LCOS and LANconfig, FileZilla before 3.66.4, Nova before 11.8, PKIX-SSH before 14.4, SecureCRT before 9.4.3, Transmit5 before 5.10.4, Win32-OpenSSH before 9.5.0.0p1-Beta, WinSCP before 6.2.2, Bitvise SSH Server before 9.32, Bitvise SSH Client before 9.33, KiTTY through 0.76.1.13, the net-ssh gem 7.2.0 for Ruby, the mscdex ssh2 module before 1.15.0 for Node.js, the thrussh library before 0.35.1 for Rust, and the Russh crate before 0.40.2 for Rust. |
Vulnerability description
Vulnerabilities found for Openssh 8.0
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2024-6484 | 6.4 | 0.00044 | 0.13022 | No | A vulnerability has been identified in Bootstrap that exposes users to Cross-Site Scripting (XSS) attacks. The issue is present in the carousel component, where the data-slide and data-slide-to attributes can be exploited through the href attribute of an <a> tag due to inadequate sanitization. This vulnerability could potentially enable attackers to execute arbitrary JavaScript within the victim's browser. |
CVE-2018-20676 | 4.3 | 0.06255 | 0.90459 | No | In Bootstrap before 3.4.0, XSS is possible in the tooltip data-viewport attribute. |
CVE-2018-14042 | 4.3 | 0.017 | 0.8149 | No | In Bootstrap before 4.1.2, XSS is possible in the data-container property of tooltip. |
CVE-2018-14040 | 4.3 | 0.01633 | 0.81101 | No | In Bootstrap before 4.1.2, XSS is possible in the collapse data-parent attribute. |
CVE-2016-10735 | 4.3 | 0.06152 | 0.90379 | No | In Bootstrap 3.x before 3.4.0 and 4.x-beta before 4.0.0-beta.2, XSS is possible in the data-target attribute, a different vulnerability than CVE-2018-14041. |
Vulnerability description
Vulnerabilities found for Bootstrap 3.3.7
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2022-4900 | 6.2 | 0.0009 | 0.26677 | No | A vulnerability was found in PHP where setting the environment variable PHP_CLI_SERVER_WORKERS to a large value leads to a heap buffer overflow. |
CVE-2024-5458 | 5.3 | 0.024 | 0.84396 | No | In PHP versions 8.1.* before 8.1.29, 8.2.* before 8.2.20, 8.3.* before 8.3.8, due to a code logic error, filtering functions such as filter_var when validating URLs (FILTER_VALIDATE_URL) for certain types of URLs the function will result in invalid user information (username + password part of URLs) being treated as valid user information. This may lead to the downstream code accepting invalid URLs as valid and parsing them incorrectly. |
Vulnerability description
Vulnerabilities found for PHP 7.4.33
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible SSH service. Starting Nmap ( https://nmap.org ) at 2025-07-19 20:10 EEST Nmap scan report for home.hmt3design.com (108.163.242.106) Host is up (0.11s latency). rDNS record for 108.163.242.106: chi204.greengeeks.net
PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH 8.0 (protocol 2.0) | ssh-auth-methods: | Supported authentication methods: | publickey | gssapi-keyex | gssapi-with-mic |_ password
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 2.54 seconds
Vulnerability description
We found that the SSH service with username/password authentication is publicly accessible. Network administrators often use remote administration protocols to control devices like switches, routers, and other essential systems. However, allowing these services to be accessible via the Internet can increase security risks, creating potential opportunities for attacks on the organization.
Risk description
Exposing this service online with username/password authentication can enable attackers to launch authentication attacks, like guessing login credentials, and potentially gaining unauthorized access. Vulnerabilities, such as unpatched software, protocol flaws, or backdoors could also be exploited. An example is the CVE-2024-3094 (XZ Utils Backdoor) vulnerability.
Recommendation
We recommend turning off SSH with username/password authentication access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the SSH service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, it is advisable to utilize SSH Public Key Authentication since it employs a key pair to verify the identity of a user or process.
Evidence
We managed to detect that Bootstrap has reached the End-of-Life (EOL).
Version detected: 3.3.7 End-of-life date: 2019-07-24 Latest version for the cycle: 3.4.1 This release cycle (3) does have long-term-support (LTS). The cycle was released on 2013-08-19 and its latest release date was 2019-02-13. The support ended on 2016-09-05.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
We managed to detect a publicly accessible Post Office Protocol (POP3) service. Starting Nmap ( https://nmap.org ) at 2025-07-19 20:10 EEST Nmap scan report for home.hmt3design.com (108.163.242.106) Host is up (0.11s latency). rDNS record for 108.163.242.106: chi204.greengeeks.net
PORT STATE SERVICE VERSION 995/tcp open ssl/pop3 Dovecot pop3d |_pop3-capabilities: PIPELINING RESP-CODES UIDL SASL(PLAIN LOGIN) AUTH-RESP-CODE TOP CAPA USER
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 8.56 seconds
Vulnerability description
We found that the Post Office Protocol (POP3) service is publicly accessible and doesn’t include STARTTLS capability. Email clients use the Post Office Protocol (POP) to download emails for user accounts. Some POP servers are initially set up to operate over an unsecured protocol. When email clients download email content through this plaintext protocol, it can pose a substantial risk to the organization's network, especially depending on which user account is set to receive the emails.
Risk description
Exposing this service online can enable attackers to conduct man-in-the-middle attacks, thereby gaining access to sensitive user credentials and the contents of emails. Given that POP3 operates via a plaintext protocol, the entirety of the data exchanged between the client and server is left unencrypted. This critical information could then be leveraged in further attacks on the organization's network.
Recommendation
We recommend turning off POP3 access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the POP3 service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, activating STARTTLS capability (switching the connection to a secure communication) or utilizing Secure POP3 (POP3S) is recommended, as this protocol employs encryption.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
home.hmt3design.com | SPF | Sender Policy Framework | "v=spf1 ip4:108.163.242.106 include:spf.greengeeks.net ip4:65.60.38.190 ip4:65.60.38.190 ip4:69.175.76.166 +a +mx +ip4:108.163.192.226 ~all" |
Vulnerability description
We found that the Sender Policy Framework (SPF) record for the domain is configured with ~all (soft fail), which indicates that emails from unauthorized IP addresses are not explicitly denied. Instead, the recipient mail server is instructed to treat these messages with suspicion but may still accept them. This configuration may not provide enough protection against email spoofing and unauthorized email delivery, leaving the domain more vulnerable to impersonation attempts.
Risk description
The ~all directive in an SPF record allows unauthorized emails to pass through some email servers, even though they fail SPF verification. While such emails may be marked as suspicious or placed into a spam folder, not all mail servers handle soft fail conditions consistently. This creates a risk that malicious actors can spoof the domain to send phishing emails or other fraudulent communications, potentially causing damage to the organization's reputation and leading to successful social engineering attacks.
Recommendation
We recommend changing the SPF record's ~all (soft fail) directive to -all (hard fail). The -all setting tells recipient mail servers to reject emails from any IP addresses not listed in the SPF record, providing stronger protection against email spoofing. Ensure that all legitimate IP addresses and services that send emails on behalf of your domain are properly included in the SPF record before implementing this change.
Evidence
We managed to detect that None has reached the End-of-Life (EOL).
Version detected: 7.4.33 End-of-life date: 2022-11-28 Latest version for the cycle: 7.4.33 This release cycle (7.4) doesn't have long-term-support (LTS). The cycle was released on 2019-11-28 and its latest release date was 2022-11-03. The support ended on 2021-11-28.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
We managed to detect a publicly accessible File Transfer Protocol (FTP) service. PORT STATE SERVICE VERSION 21/tcp open ftp Pure-FTPd
Vulnerability description
We found that the File Transfer Protocol (FTP) service is publicly accessible. The FTP enables client systems to connect to upload and download files. Nonetheless, FTP lacks encryption for the data exchanged between the server and the client, leaving all transferred data exposed in plaintext.
Risk description
Exposing this service online can enable attackers to execute man-in-the-middle attacks, capturing sensitive user credentials and the contents of files because FTP operates without encryption. The entirety of the communication between the client and the server remains unsecured in plaintext. This acquired information could further facilitate additional attacks within the network.
Recommendation
We recommend turning off FTP access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the FTP service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing SFTP (Secure File Transfer Protocol) is recommended as this protocol employs encryption to secure data transfers.
Evidence
Software / Version | Category |
---|---|
WordPress 6.8.2 | CMS, Blogs |
MySQL | Databases |
PHP 8.1.32 | Programming languages |
Bricks | Page builders, WordPress themes |
Automatic.css | UI frameworks, WordPress plugins |
HSTS | Security |
HTTP/3 | Miscellaneous |
Underscore.js 1.13.7 | JavaScript libraries |
jQuery | JavaScript libraries |
Clipboard.js | JavaScript libraries |
RSS | Miscellaneous |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
home.hmt3design.com | A | IPv4 address | 108.163.242.106 |
home.hmt3design.com | SPF | Sender Policy Framework | "v=spf1 ip4:108.163.242.106 include:spf.greengeeks.net ip4:65.60.38.190 ip4:65.60.38.190 ip4:69.175.76.166 +a +mx +ip4:108.163.192.226 ~all" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Operating System | Accuracy |
---|---|
Linux 4.4 | 100% |
Vulnerability description
OS Detection
Evidence
Software / Version | Category |
---|---|
cPanel | Hosting panels |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
cPanel | Hosting panels |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
PHP 7.4.33 | Programming languages |
Bootstrap 3.3.7 | UI frameworks |
reCAPTCHA | Security |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.