Vulnerability Scan Result

ip_address | 5.77.36.221 |
country | GB ![]() |
network_name | Iomart Cloud Services Limited |
asn | AS20860 |
21/tcp | ftp | Microsoft ftpd - |
25/tcp | smtp | MailEnable smptd 10.27-- |
53/tcp | domain | ISC BIND - |
80/tcp | http | Microsoft IIS httpd 10 |
110/tcp | pop3 | MailEnable POP3 Server - |
135/tcp | msrpc | Microsoft Windows RPC - |
143/tcp | imap | MailEnable imapd - |
443/tcp | https | - - |
465/tcp | smtp | MailEnable smptd 10.27-- |
587/tcp | smtp | MailEnable smptd 10.27-- |
993/tcp | imap | MailEnable imapd - |
995/tcp | pop3 | MailEnable POP3 Server - |
1433/tcp | ms-sql-s | Microsoft SQL Server 2016 13.00.4259 |
3389/tcp | ms-wbt-server | Microsoft Terminal Services - |
5985/tcp | http | Microsoft HTTPAPI httpd 2 |
8443/tcp | https | Microsoft IIS httpd 10 |
Software / Version | Category |
---|---|
Animate.css | UI frameworks |
Google Font API | Font scripts |
Bootstrap Icons | Font scripts |
Isotope | JavaScript libraries |
jQuery 3.4.1 | JavaScript libraries |
Lightbox | JavaScript libraries |
AOS | JavaScript libraries |
Windows Server | Operating systems |
Modernizr 2.8.3 | JavaScript libraries |
Swiper | JavaScript libraries |
Microsoft ASP.NET 4.0.30319 | Web frameworks |
IIS 10.0 | Web servers |
Plesk | Hosting panels |
Web Application Vulnerabilities
Evidence
Risk Level | CVSS | CVE | Summary | Affected software |
---|---|---|---|---|
4.3 | CVE-2020-11023 | In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | jquery 3.4.1 | |
4.3 | CVE-2020-11022 | In jQuery versions greater than or equal to 1.2 and before 3.5.0, passing HTML from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | jquery 3.4.1 |
Vulnerability description
We noticed known vulnerabilities in the target application based on the server responses. They are usually related to outdated systems and expose the affected applications to the risk of unauthorized access to confidential data and possibly denial of service attacks. Depending on the system distribution the affected software can be patched but displays the same version, requiring manual checking.
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system. Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed 'high' severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1026 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://the-novagroup.com/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Risk description
The risk is that lack of this header permits an attacker to force a victim user to initiate a clear-text HTTP connection to the server, thus opening the possibility to eavesdrop on the network traffic and extract sensitive information (e.g. session cookies).
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://the-novagroup.com/ | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the X-Content-Type-Options
header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://the-novagroup.com/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://the-novagroup.com/bundles/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Suspicious message customErrors mode found in: |
Vulnerability description
We noticed that the target application's debug messages reveal unnecessary information about the system's internal state. For example, debug data in design can be exposed through internal memory array dumps or boot logs through interfaces like UART via TAP commands, scan chain, etc. Thus, the more information contained in a debug message, the easier it is to debug.
Risk description
The risk of revealing debug information is that it could help an attacker either decipher a vulnerability, and/or gain a better understanding of the system. Thus, this extra information could lower the “security by obscurity” factor. While “security by obscurity” alone is insufficient, it can help as a part of “Defense-in-depth”.
Recommendation
Ensure that a debug message does not reveal any unnecessary information during the debug process for the intended response.
Classification
CWE | CWE-209 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Evidence |
---|---|
https://the-novagroup.com/ | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy
HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
Software / Version | Category |
---|---|
Animate.css | UI frameworks |
Google Font API | Font scripts |
Bootstrap Icons | Font scripts |
Isotope | JavaScript libraries |
jQuery 3.4.1 | JavaScript libraries |
Lightbox | JavaScript libraries |
AOS | JavaScript libraries |
Windows Server | Operating systems |
Modernizr 2.8.3 | JavaScript libraries |
Swiper | JavaScript libraries |
Microsoft ASP.NET 4.0.30319 | Web frameworks |
IIS 10.0 | Web servers |
Plesk | Hosting panels |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://the-novagroup.com/bundles/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Error message ASP.NET is configured to show verbose error messages found in: |
Vulnerability description
We noticed that the target application does not properly handle exceptional conditions, leading to error messages that reveal sensitive information.
Risk description
The risk is that an attacker may use the contents of error messages to help launch another, more focused attack. For example, an attempt to exploit a path traversal weakness (CWE-22) might yield the full pathname of the installed application.
Recommendation
It is recommended treating all exceptions of the application flow. Ensure that error messages only contain minimal details.
Classification
CWE | CWE-209 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://the-novagroup.com/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Operating system paths found in the HTTP response: |
Vulnerability description
We found operating system paths returned in a HTTP response.
Risk description
The risk is that path disclosure may help an attacker learn more about the remote server's file system, thus increasing the effectiveness and precision of any future attacks.
Recommendation
Configure the web server to avoid leaking path information by using generic error messages that do not reveal any internal file paths. Make sure no server file is referred with its absolute path in the website code.
Classification
CWE | CWE-200 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Evidence
URL | Method | Summary |
---|---|---|
https://the-novagroup.com/ | OPTIONS | We did a HTTP OPTIONS request. The server responded with a 200 status code and the header: `Allow: OPTIONS, TRACE, GET, HEAD, POST` Request / Response |
Vulnerability description
We have noticed that the webserver responded with an Allow HTTP header when an OPTIONS HTTP request was sent. This method responds to requests by providing information about the methods available for the target resource.
Risk description
The only risk this might present nowadays is revealing debug HTTP methods that can be used on the server. This can present a danger if any of those methods can lead to sensitive information, like authentication information, secret keys.
Recommendation
We recommend that you check for unused HTTP methods or even better, disable the OPTIONS method. This can be done using your webserver configuration.
Classification
CWE | CWE-16 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Evidence
Vulnerability description
Website is accessible.
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://the-novagroup.com/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Email Address: info@the-novagroup.com |
Vulnerability description
We noticed that this web application exposes email addresses, which might be unintended. While not inherently a vulnerability, this information could be leveraged in social engineering or spam related activities.
Risk description
The risk is that exposed email addresses within the application could be accessed by unauthorized parties. This could lead to privacy violations, spam, phishing attacks, or other forms of misuse.
Recommendation
Compartmentalize the application to have 'safe' areas where trust boundaries can be unambiguously drawn. Do not allow email addresses to go outside of the trust boundary, and always be careful when interfacing with a compartment outside of the safe area.
Classification
CWE | CWE-200 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Infrastructure Vulnerabilities
Evidence
We managed to detect a publicly accessible Remote Desktop Protocol (RDP) service. PORT STATE SERVICE VERSION 3389/tcp open ms-wbt-server Microsoft Terminal Services
Vulnerability description
We found that the Remote Desktop Protocol (RDP) service is publicly accessible. Attackers often look for the Remote Desktop Protocol service due to its capability to provide remote access and control of a server, usually one that operates on the Microsoft Windows operating system.
Risk description
Exposing this service online can enable attackers to launch authentication attacks, like guessing login credentials, potentially gaining unauthorized access. Attackers might use publicly available employee information for brute-force attacks. Vulnerabilities, such as unpatched software or protocol flaws, could also be exploited. An example is CVE-2019-0708 (Bluekeep) vulnerability. Additionally, integration with Active Directory Domain Services could allow attackers to move laterally across the network, accessing more systems and sensitive data.
Recommendation
We recommend turning off Remote Desktop Protocol access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). Avoid permitting direct user authentication to Active Directory over the Internet to prevent attackers from engaging in password guessing or causing the lockout of legitimate domain user accounts. If the Remote Desktop Protocol service is essential for business purposes, limiting access to designated IP addresses is recommended.
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2022-42136 | 8.8 | 0.00166 | 0.38366 | No | Authenticated mail users, under specific circumstances, could add files with unsanitized content in public folders where the IIS user had permission to access. That action, could lead an attacker to store arbitrary code on that files and execute RCE commands. |
Vulnerability description
Vulnerabilities found for Mailenable Smptd 10.27--
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2022-42136 | 8.8 | 0.00166 | 0.38366 | No | Authenticated mail users, under specific circumstances, could add files with unsanitized content in public folders where the IIS user had permission to access. That action, could lead an attacker to store arbitrary code on that files and execute RCE commands. |
Vulnerability description
Vulnerabilities found for Mailenable Smptd 10.27--
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
CVE | CVSS | EPSS Score | EPSS Percentile | CISA KEV | Summary |
---|---|---|---|---|---|
CVE-2022-42136 | 8.8 | 0.00166 | 0.38366 | No | Authenticated mail users, under specific circumstances, could add files with unsanitized content in public folders where the IIS user had permission to access. That action, could lead an attacker to store arbitrary code on that files and execute RCE commands. |
Vulnerability description
Vulnerabilities found for Mailenable Smptd 10.27--
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible Windows Microsoft SQL Server (MSSQL) service. PORT STATE SERVICE VERSION 1433/tcp open ms-sql-s Microsoft SQL Server 2016 13.00.4259
Vulnerability description
We found that the Microsoft SQL Server (MSSQL) is publicly accessible. This service often holds critical organizational data, making it a potential prime target for determined attackers.
Risk description
The risk exists that an attacker exploits this issue by launching a password-based attack on the MSSQL service. If an attacker identifies a correct set of login details, they could gain access to the database and start enumerating, potentially revealing confidential information. Moreover, such vulnerabilities could lead to other forms of attacks, including privilege escalation, allowing attackers to run system commands and move laterally to other systems in the internal network.
Recommendation
We recommend ensuring that the Microsoft SQL Server (MSSQL) service is not publicly accessible. The MSSQL service should be safeguarded behind a firewall or made available only to users connected through a Virtual Private Network (VPN) server. However, if the MSSQL service is required to be directly accessible over the Internet, we recommend reconfiguring it such that it is accessible only from known IP addresses.
Evidence
We managed to detect a publicly accessible Windows Remote Management (WinRM) service. PORT STATE SERVICE VERSION 5985/tcp open http Microsoft HTTPAPI httpd 2.0
Vulnerability description
We found that the Windows Remote Management (WinRM) service is publicly accessible. Network administrators often use remote administration protocols to control devices like servers and other essential systems. However, allowing these services to be accessible from the Internet can increase security risks, creating potential opportunities for attacks on the organization. Also, it operates in cleartext, making all traffic communicated through this protocol vulnerable to interception in its unencrypted form.
Risk description
Exposing this service online can enable attackers to launch authentication attacks, like guessing login credentials, and potentially gaining unauthorized access. Also, any vulnerabilities in the WinRM service or the underlying Windows OS can be exploited by attackers to gain access or elevate privileges. Given the high privilege level of WinRM, exploiting such vulnerabilities can lead to full system compromise This could also lead to the exposure of sensitive data such as user credentials and other sensitive information depending on the device being managed remotely since it uses a cleartext transfer of data. If an attacker intercepts these credentials, they might gain unauthorized access to the device.
Recommendation
We recommend turning off WinRM access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the WinRM service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing HTTPS with WinRM (port 5986) is recommended as this protocol employs encryption.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.the-novagroup.com | TXT | Text record | "v=DMARC1; p=none" |
Vulnerability description
We found that the target uses p=none in the DMARC policy. The DMARC policy set to p=none means that the domain owner is not taking any action on emails that fail DMARC validation. This configuration effectively disables enforcement, allowing potentially spoofed or fraudulent emails to be delivered without any additional scrutiny.
Risk description
Emails that fail DMARC checks are still delivered to recipients. This leaves the domain highly vulnerable to email spoofing and phishing attacks, as malicious actors can impersonate the domain without facing any consequences from DMARC enforcement.
Recommendation
We recommend changing the DMARC policy to p=quarantine or, ideally, p=reject to actively block or quarantine emails that fail DMARC validation. This will enhance the security of your domain against spoofing and phishing attacks by ensuring that only legitimate emails are delivered.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.the-novagroup.com | TXT | Text record | "v=DMARC1; p=none" |
Vulnerability description
We found that the DMARC record for the domain is not configured with ruf tag. A missing ruf (forensic reporting) tag in a DMARC record indicates that the domain owner has not enabled the collection of detailed failure reports. Forensic reports provide valuable insights into specific instances where emails fail DMARC authentication. Without the ruf tag, the domain administrator loses the ability to receive and analyze these reports, making it difficult to investigate individual email failures or identify targeted phishing or spoofing attacks that may be exploiting weaknesses in the email authentication setup.
Risk description
Without forensic reports (ruf), domain owners have limited visibility into the specifics of failed DMARC validation. This means potential malicious activity, such as email spoofing or phishing attempts, might go unnoticed until they result in more significant security breaches or reputational damage. Forensic reports allow for quick response to email abuses by providing detailed information about the failure, including the header information of the emails involved. The absence of this data hampers an organization's ability to identify and mitigate threats targeting its domain, increasing the risk of ongoing spoofing and fraud.
Recommendation
We recommend configuring the ruf tag in the DMARC record. This tag specifies where forensic reports should be sent, providing the domain owner with detailed data on DMARC validation failures. Forensic reports allow administrators to analyze why certain emails failed authentication, making it easier to fine-tune DMARC policies or address potential vulnerabilities. Ensure that the ruf email address belongs to a secure and trusted location capable of handling sensitive email data.
Evidence
We managed to detect a publicly accessible Remote Procedure Call (RPC) service. PORT STATE SERVICE VERSION 135/tcp open msrpc Microsoft Windows RPC
Vulnerability description
We found that the Windows Remote Procedure Call (RPC) service is publicly accessible. RPC is a protocol that one program can use to request a service from a program located on another computer in a network.
Risk description
Exposing this service online can enable attackers to launch attacks, including unauthorized access, remote code execution, information disclosure, denial of service (DoS), and potential lateral movement within the network.
Recommendation
We recommend turning off RPC access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the RPC service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall.
Evidence
We managed to detect a publicly accessible Post Office Protocol (POP3) service. Starting Nmap ( https://nmap.org ) at 2025-07-17 23:06 EEST Nmap scan report for the-novagroup.com (5.77.36.221) Host is up (0.032s latency). rDNS record for 5.77.36.221: mail.haveua.co.uk
PORT STATE SERVICE VERSION 995/tcp open ssl/pop3 MailEnable POP3 Server |_pop3-capabilities: USER UIDL TOP Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 7.50 seconds
Vulnerability description
We found that the Post Office Protocol (POP3) service is publicly accessible and doesn’t include STARTTLS capability. Email clients use the Post Office Protocol (POP) to download emails for user accounts. Some POP servers are initially set up to operate over an unsecured protocol. When email clients download email content through this plaintext protocol, it can pose a substantial risk to the organization's network, especially depending on which user account is set to receive the emails.
Risk description
Exposing this service online can enable attackers to conduct man-in-the-middle attacks, thereby gaining access to sensitive user credentials and the contents of emails. Given that POP3 operates via a plaintext protocol, the entirety of the data exchanged between the client and server is left unencrypted. This critical information could then be leveraged in further attacks on the organization's network.
Recommendation
We recommend turning off POP3 access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the POP3 service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, activating STARTTLS capability (switching the connection to a secure communication) or utilizing Secure POP3 (POP3S) is recommended, as this protocol employs encryption.
Evidence
We checked 2056 selectors but found no DKIM records.
Vulnerability description
We found that no DKIM record was configured. When a DKIM (DomainKeys Identified Mail) record is not present for a domain, it means that outgoing emails from that domain are not cryptographically signed. DKIM is a critical component of email authentication, allowing recipients to verify that an email was genuinely sent from an authorized server and that the message has not been altered in transit. The absence of a DKIM record leaves the domain vulnerable to email spoofing and phishing attacks, as attackers can send fraudulent emails that appear to originate from the domain without any cryptographic verification.
Risk description
Without a DKIM record, recipients have no way of verifying the integrity or authenticity of emails sent from the domain. This increases the likelihood of phishing and spoofing attacks, where malicious actors impersonate the domain to send fraudulent emails. This can lead to significant security incidents, such as credential theft, financial fraud, or the distribution of malware. Additionally, many email providers use DKIM as part of their spam and reputation filters, meaning that emails from a domain without DKIM may be flagged as spam or rejected, impacting the deliverability and reputation of legitimate emails.
Recommendation
We recommend implementing DKIM for your domain to enhance email security and protect your brand from email-based attacks. Generate a DKIM key pair (public and private keys), publish the public key in the DNS under the appropriate selector, and configure your email servers to sign outgoing messages using the private key. Ensure that the DKIM key length is at least 1024 bits to prevent cryptographic attacks. Regularly monitor DKIM signatures to ensure the system is functioning correctly and update keys periodically to maintain security.
Evidence
We managed to detect a publicly accessible Post Office Protocol (POP3) service. Starting Nmap ( https://nmap.org ) at 2025-07-17 23:06 EEST Nmap scan report for the-novagroup.com (5.77.36.221) Host is up (0.031s latency). rDNS record for 5.77.36.221: mail.haveua.co.uk
PORT STATE SERVICE VERSION 110/tcp open pop3 MailEnable POP3 Server |_pop3-capabilities: TOP USER UIDL Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ . Nmap done: 1 IP address (1 host up) scanned in 1.27 seconds
Vulnerability description
We found that the Post Office Protocol (POP3) service is publicly accessible and doesn’t include STARTTLS capability. Email clients use the Post Office Protocol (POP) to download emails for user accounts. Some POP servers are initially set up to operate over an unsecured protocol. When email clients download email content through this plaintext protocol, it can pose a substantial risk to the organization's network, especially depending on which user account is set to receive the emails.
Risk description
Exposing this service online can enable attackers to conduct man-in-the-middle attacks, thereby gaining access to sensitive user credentials and the contents of emails. Given that POP3 operates via a plaintext protocol, the entirety of the data exchanged between the client and server is left unencrypted. This critical information could then be leveraged in further attacks on the organization's network.
Recommendation
We recommend turning off POP3 access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the POP3 service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, activating STARTTLS capability (switching the connection to a secure communication) or utilizing Secure POP3 (POP3S) is recommended, as this protocol employs encryption.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.the-novagroup.com | TXT | Text record | "v=DMARC1; p=none" |
Vulnerability description
We found that the DMARC record for the domain is not configured with sp policy, meaning that no policy is enforced for subdomains. When a DMARC record does not include a subdomain policy (sp directive), subdomains are not explicitly covered by the main domain's DMARC policy. This means that emails sent from subdomains (e.g., sub.example.com) may not be subject to the same DMARC enforcement as the main domain (example.com). As a result, attackers could potentially spoof emails from subdomains without being blocked or flagged, even if the main domain has a strict DMARC policy.
Risk description
Without a subdomain policy (sp directive) in the DMARC record, subdomains are not protected by the same DMARC enforcement as the main domain, leaving them vulnerable to spoofing attacks. This inconsistency can be exploited by attackers to send phishing emails from subdomains, undermining the organization’s overall email security.
Recommendation
To mitigate the risk, we recommend configuring the DMARC record with a subdomain policy by adding the sp=reject or sp=quarantine directive. This will extend DMARC enforcement to all subdomains, preventing spoofing attempts and maintaining consistent security across both the main domain and its subdomains.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.the-novagroup.com | TXT | Text record | "v=DMARC1; p=none" |
Vulnerability description
We found that the DMARC record for the domain is not configured with rua tag. When a DMARC record is not configured with the rua (Reporting URI for Aggregate Reports) tag, the domain owner misses out on critical feedback regarding the domain's email authentication performance. Aggregate reports are essential for monitoring how a domain's DMARC policy is applied across various mail servers and whether legitimate or malicious emails are being sent on behalf of the domain. Without this reporting, domain administrators have no visibility into how their DMARC policy is being enforced, which hinders their ability to detect potential spoofing or authentication issues.
Risk description
The absence of rua reporting creates a significant blind spot in the domain's email security posture. Without aggregate reports, domain administrators cannot track DMARC compliance across email sent from their domain, leaving them unaware of potential misconfigurations or unauthorized use of their domain for malicious purposes, such as phishing or spoofing. This lack of visibility increases the risk of undetected spoofing attempts, which could damage the domain's reputation and lead to financial, operational, or reputational harm. Moreover, legitimate email issues, such as misaligned SPF or DKIM configurations, may also go unnoticed, affecting email deliverability.
Recommendation
We recommend configuring the rua tag in the DMARC record to receive aggregate reports from mail servers. This tag should point to a reliable email address or monitoring service capable of handling DMARC aggregate reports, such as rua=mailto:dmarc-reports@example.com. These reports provide valuable insights into how email from the domain is being treated by receiving mail servers, highlighting potential authentication issues and attempts to spoof the domain. Regularly reviewing these reports will help ensure the DMARC policy is properly enforced and that any email authentication failures are addressed in a timely manner.
Evidence
We managed to detect a publicly accessible File Transfer Protocol (FTP) service. PORT STATE SERVICE VERSION 21/tcp open ftp Microsoft ftpd
Vulnerability description
We found that the File Transfer Protocol (FTP) service is publicly accessible. The FTP enables client systems to connect to upload and download files. Nonetheless, FTP lacks encryption for the data exchanged between the server and the client, leaving all transferred data exposed in plaintext.
Risk description
Exposing this service online can enable attackers to execute man-in-the-middle attacks, capturing sensitive user credentials and the contents of files because FTP operates without encryption. The entirety of the communication between the client and the server remains unsecured in plaintext. This acquired information could further facilitate additional attacks within the network.
Recommendation
We recommend turning off FTP access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the FTP service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing SFTP (Secure File Transfer Protocol) is recommended as this protocol employs encryption to secure data transfers.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
the-novagroup.com | A | IPv4 address | 5.77.36.221 |
the-novagroup.com | NS | Name server | ns3483.eukns.com |
the-novagroup.com | NS | Name server | ns3484.eukns.com |
the-novagroup.com | MX | Mail server | 10 mail.the-novagroup.com |
the-novagroup.com | SOA | Start of Authority | ns3484.eukns.com. extramile.gmx.co.uk. 2025052201 10800 3600 604800 10800 |
the-novagroup.com | SPF | Sender Policy Framework | "v=spf1 +a +mx +a:euk-93092.eukservers.com -all" |
_dmarc.the-novagroup.com | TXT | Text record | "v=DMARC1; p=none" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
the-novagroup.com | SPF | Sender Policy Framework | "v=spf1 +a +mx +a:euk-93092.eukservers.com -all" |
Evidence
Software / Version | Category |
---|---|
Microsoft HTTPAPI 2.0 | Web servers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
Plesk | Hosting panels |
Sentry | Issue trackers |
Windows Server | Operating systems |
Microsoft ASP.NET | Web frameworks |
RequireJS | JavaScript frameworks |
Prototype | JavaScript frameworks |
IIS 10.0 | Web servers |
core-js 3.8.1 | JavaScript libraries |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
Plesk | Hosting panels |
Windows Server | Operating systems |
Microsoft ASP.NET 4.0.30319 | Web frameworks |
IIS 10.0 | Web servers |
Lightbox | JavaScript libraries |
jQuery | JavaScript libraries |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Operating System | Accuracy |
---|---|
Microsoft Windows Server 2016 | 100% |
Vulnerability description
OS Detection