Vulnerability Scan Result


Title: | Ziptrack Blinds & Zip Blinds, Outdoor Blinds & Curtain Supplier Singapore (SG) |
Description: | Singapore's premier supplier of Ziptrack blinds, outdoor blinds, and curtains. Specializing in custom solutions for every space, we're your go-to outdoor blinds specialist, enhancing your living and commercial areas. |
IP address | 110.74.164.59 |
Country | MY ![]() |
AS number | AS45668 |
Net name | Aims Data Centre SDN BHD |
22/tcp | ssh | OpenSSH 7.4 |
25/tcp | smtp | - - |
53/tcp | domain | PowerDNS Authoritative Server 4.9.2 |
80/tcp | http | Apache httpd - |
110/tcp | pop3 | Dovecot pop3d - |
143/tcp | imap | Dovecot imapd - |
443/tcp | https | Apache httpd - |
465/tcp | smtp | Exim smtpd 4.98.1 |
587/tcp | smtp | Exim smtpd 4.98.1 |
993/tcp | imaps | - - |
995/tcp | pop3s | - - |
Software / Version | Category |
---|---|
Google Ads | Advertising |
AlertifyJS | JavaScript frameworks |
FancyBox 4.0.27 | JavaScript libraries |
Bootstrap 4.4.1 | UI frameworks |
Google Analytics GA4 | Analytics |
Apache HTTP Server | Web servers |
jQuery 3.7.1 | JavaScript libraries |
Slick | JavaScript libraries |
AOS | JavaScript libraries |
Open Graph | Miscellaneous |
PhotoSwipe | Photo galleries, JavaScript libraries |
PHP | Programming languages |
Popper | Miscellaneous |
Google Ads Conversion Tracking | Analytics |
PWA | Miscellaneous |
Google Tag Manager | Tag managers |
HSTS | Security |
Web Application Vulnerabilities
Evidence
URL | Cookie Name | Evidence |
---|---|---|
https://www.ziptrackblinds.com.sg/ | PHPSESSID, _isvisited78ade5b560946211ce63652717b37aea | Set-Cookie: PHPSESSID=072c338f9644e228d1da2f11bf2f7f3c Set-Cookie: _isvisited78ade5b560946211ce63652717b37aea=1 |
Vulnerability description
We found that a cookie has been set without the Secure
flag, which means the browser will send it over an unencrypted channel (plain HTTP) if such a request is made. The root cause for this usually revolves around misconfigurations in the code or server settings.
Risk description
The risk exists that an attacker will intercept the clear-text communication between the browser and the server and he will steal the cookie of the user. If this is a session cookie, the attacker could gain unauthorized access to the victim's web session.
Recommendation
Whenever a cookie contains sensitive information or is a session token, then it should always be passed using an encrypted channel. Ensure that the secure flag is set for cookies containing such sensitive information.
Classification
CWE | CWE-614 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Cookie Name | Evidence |
---|---|---|
https://www.ziptrackblinds.com.sg/ | PHPSESSID, _isvisited78ade5b560946211ce63652717b37aea | The server responded with Set-Cookie header(s) that does not specify the HttpOnly flag: Set-Cookie: PHPSESSID=072c338f9644e228d1da2f11bf2f7f3c Set-Cookie: _isvisited78ade5b560946211ce63652717b37aea=1 |
Vulnerability description
We found that a cookie has been set without the HttpOnly
flag, which means it can be accessed by potentially malicious JavaScript code running inside the web page. The root cause for this usually revolves around misconfigurations in the code or server settings.
Risk description
The risk is that an attacker who injects malicious JavaScript code on the page (e.g. by using an XSS attack) can access the cookie and can send it to another site. In case of a session cookie, this could lead to session hijacking.
Recommendation
Ensure that the HttpOnly flag is set for all cookies.
Classification
CWE | CWE-1004 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.ziptrackblinds.com.sg/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Software / Version | Category |
---|---|
Google Ads | Advertising |
AlertifyJS | JavaScript frameworks |
FancyBox 4.0.27 | JavaScript libraries |
Bootstrap 4.4.1 | UI frameworks |
Google Analytics GA4 | Analytics |
Apache HTTP Server | Web servers |
jQuery 3.7.1 | JavaScript libraries |
Slick | JavaScript libraries |
AOS | JavaScript libraries |
Open Graph | Miscellaneous |
PhotoSwipe | Photo galleries, JavaScript libraries |
PHP | Programming languages |
Popper | Miscellaneous |
Google Ads Conversion Tracking | Analytics |
PWA | Miscellaneous |
Google Tag Manager | Tag managers |
HSTS | Security |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
Website is accessible.
Evidence
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Infrastructure Vulnerabilities
Evidence
Risk level | CVSS | CVE | Summary |
---|---|---|---|
9.8 | CVE-2023-38408 | The PKCS#11 feature in ssh-agent in OpenSSH before 9.3p2 has an insufficiently trustworthy search path, leading to remote code execution if an agent is forwarded to an attacker-controlled system. (Code in /usr/lib is not necessarily safe for loading into ssh-agent.) NOTE: this issue exists because of an incomplete fix for CVE-2016-10009. | |
6.8 | CVE-2020-15778 | scp in OpenSSH through 8.3p1 allows command injection in the scp.c toremote function, as demonstrated by backtick characters in the destination argument. NOTE: the vendor reportedly has stated that they intentionally omit validation of "anomalous argument transfers" because that could "stand a great chance of breaking existing workflows." | |
6.5 | CVE-2023-51385 | In ssh in OpenSSH before 9.6, OS command injection might occur if a user name or host name has shell metacharacters, and this name is referenced by an expansion token in certain situations. For example, an untrusted Git repository can have a submodule with shell metacharacters in a user name or host name. | |
5.9 | CVE-2023-48795 | The SSH transport protocol with certain OpenSSH extensions, found in OpenSSH before 9.6 and other products, allows remote attackers to bypass integrity checks such that some packets are omitted (from the extension negotiation message), and a client and server may consequently end up with a connection for which some security features have been downgraded or disabled, aka a Terrapin attack. This occurs because the SSH Binary Packet Protocol (BPP), implemented by these extensions, mishandles the handshake phase and mishandles use of sequence numbers. For example, there is an effective attack against SSH's use of ChaCha20-Poly1305 (and CBC with Encrypt-then-MAC). The bypass occurs in chacha20-poly1305@openssh.com and (if CBC is used) the -etm@openssh.com MAC algorithms. This also affects Maverick Synergy Java SSH API before 3.1.0-SNAPSHOT, Dropbear through 2022.83, Ssh before 5.1.1 in Erlang/OTP, PuTTY before 0.80, AsyncSSH before 2.14.2, golang.org/x/crypto before 0.17.0, libssh before 0.10.6, libssh2 through 1.11.0, Thorn Tech SFTP Gateway before 3.4.6, Tera Term before 5.1, Paramiko before 3.4.0, jsch before 0.2.15, SFTPGo before 2.5.6, Netgate pfSense Plus through 23.09.1, Netgate pfSense CE through 2.7.2, HPN-SSH through 18.2.0, ProFTPD before 1.3.8b (and before 1.3.9rc2), ORYX CycloneSSH before 2.3.4, NetSarang XShell 7 before Build 0144, CrushFTP before 10.6.0, ConnectBot SSH library before 2.2.22, Apache MINA sshd through 2.11.0, sshj through 0.37.0, TinySSH through 20230101, trilead-ssh2 6401, LANCOM LCOS and LANconfig, FileZilla before 3.66.4, Nova before 11.8, PKIX-SSH before 14.4, SecureCRT before 9.4.3, Transmit5 before 5.10.4, Win32-OpenSSH before 9.5.0.0p1-Beta, WinSCP before 6.2.2, Bitvise SSH Server before 9.32, Bitvise SSH Client before 9.33, KiTTY through 0.76.1.13, the net-ssh gem 7.2.0 for Ruby, the mscdex ssh2 module before 1.15.0 for Node.js, the thrussh library before 0.35.1 for Rust, and the Russh crate before 0.40.2 for Rust. | |
5.8 | CVE-2019-6111 | An issue was discovered in OpenSSH 7.9. Due to the scp implementation being derived from 1983 rcp, the server chooses which files/directories are sent to the client. However, the scp client only performs cursory validation of the object name returned (only directory traversal attacks are prevented). A malicious scp server (or Man-in-The-Middle attacker) can overwrite arbitrary files in the scp client target directory. If recursive operation (-r) is performed, the server can manipulate subdirectories as well (for example, to overwrite the .ssh/authorized_keys file). |
Vulnerability description
Vulnerabilities found for Openssh 7.4
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.;
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible SSH service.
Starting Nmap ( https://nmap.org ) at 2025-04-13 21:18 EEST
Nmap scan report for ziptrackblinds.com.sg (110.74.164.59)
Host is up (0.17s latency).
Other addresses for ziptrackblinds.com.sg (not scanned): 2403:bc00:7fff:7::8
rDNS record for 110.74.164.59: orange10.newpages.com.my
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 7.4 (protocol 2.0)
| ssh-auth-methods:
| Supported authentication methods:
| publickey
| gssapi-keyex
| gssapi-with-mic
|_ password
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 2.99 seconds
Vulnerability description
We found that the SSH service with username/password authentication is publicly accessible. Network administrators often use remote administration protocols to control devices like switches, routers, and other essential systems. However, allowing these services to be accessible via the Internet can increase security risks, creating potential opportunities for attacks on the organization.
Risk description
Exposing this service online with username/password authentication can enable attackers to launch authentication attacks, like guessing login credentials, and potentially gaining unauthorized access. Vulnerabilities, such as unpatched software, protocol flaws, or backdoors could also be exploited. An example is the CVE-2024-3094 (XZ Utils Backdoor) vulnerability.
Recommendation
We recommend turning off SSH with username/password authentication access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the SSH service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, it is advisable to utilize SSH Public Key Authentication since it employs a key pair to verify the identity of a user or process.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
ziptrackblinds.com.sg | SPF | Sender Policy Framework | "v=spf1 ip4:110.74.164.54 ip4:110.74.164.59 +a +mx ~all" |
Vulnerability description
We found that the Sender Policy Framework (SPF) record for the domain is configured with ~all (soft fail), which indicates that emails from unauthorized IP addresses are not explicitly denied. Instead, the recipient mail server is instructed to treat these messages with suspicion but may still accept them. This configuration may not provide enough protection against email spoofing and unauthorized email delivery, leaving the domain more vulnerable to impersonation attempts.
Risk description
The ~all directive in an SPF record allows unauthorized emails to pass through some email servers, even though they fail SPF verification. While such emails may be marked as suspicious or placed into a spam folder, not all mail servers handle soft fail conditions consistently. This creates a risk that malicious actors can spoof the domain to send phishing emails or other fraudulent communications, potentially causing damage to the organization's reputation and leading to successful social engineering attacks.
Recommendation
We recommend changing the SPF record's ~all (soft fail) directive to -all (hard fail). The -all setting tells recipient mail servers to reject emails from any IP addresses not listed in the SPF record, providing stronger protection against email spoofing. Ensure that all legitimate IP addresses and services that send emails on behalf of your domain are properly included in the SPF record before implementing this change.
Evidence
We didn't find any TXT records associated with the target.
Vulnerability description
We found that the target server has no DMARC policy configured. A missing DMARC (Domain-based Message Authentication, Reporting, and Conformance) policy means that the domain is not enforcing any DMARC policies to protect against email spoofing and phishing attacks. Without DMARC, even if SPF (Sender Policy Framework) or DKIM (DomainKeys Identified Mail) are configured, there is no mechanism to tell receiving email servers how to handle messages that fail authentication. This leaves the domain vulnerable to abuse, such as email spoofing and impersonation.
Risk description
Without a DMARC policy, your domain is highly vulnerable to email spoofing, allowing attackers to impersonate your brand and send fraudulent emails that appear legitimate. This can lead to phishing attacks targeting your customers, employees, or partners, potentially resulting in stolen credentials, financial loss, or unauthorized access to sensitive systems. Additionally, repeated spoofing attempts can severely damage your brand's reputation, as recipients may lose trust in communications from your domain, associating your brand with malicious activity. The absence of DMARC also prevents you from monitoring and mitigating email-based attacks, leaving your domain exposed to ongoing abuse.
Recommendation
We recommend implementing a DMARC policy for your domain. Start by configuring a DMARC record with a policy of p=none, which will allow you to monitor email flows without impacting legitimate emails. This initial setup helps identify how emails from your domain are being processed by recipient servers. Once you’ve verified that legitimate emails are passing SPF and DKIM checks, you can gradually enforce stricter policies like p=quarantine or p=reject to protect against spoofing and phishing attacks. Additionally, include rua and ruf email addresses in the DMARC record to receive aggregate and forensic reports. These reports will provide valuable insights into authentication failures and help you detect any spoofing attempts.
Evidence
DKIM selector | Key type | Key size | Value |
---|---|---|---|
default | rsa | 1422 | "v=DKIM1; k=rsa; p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAyj+gP22Gmm1R8VvXMl5LBUkaCS6oQRNUD5Lyhh2ONsn5B23t/2BnL7RfbFnMLnXk2B3o6mH5Z+5fVgypt0o95IgUXYGGCPkVDh5m5qdBUTaqINuWXoSC/Dav8COvQgYep9aPSkxhLO5NldHgqnMNO4j/pDNz+M40i/AbjWq8u6Hl/sdsBJgwY/a3ukuAbE0+N" "gQ3vit/tLwLgdAoGbiiCji57SZj/qX4BaBxRaV23uzvxdlM6U2wbeENZh5MYk+WP6PU5UM+qrzHcQEDPWANuoIAAjbnHNbSeR629j361x8/AnUhImy6BALQPSeZT6OB/GcnH2N1SdYVXJjdGDcudQIDAQAB;" |
Vulnerability description
We found that the DKIM record uses common selectors. The use of common DKIM selectors such as default, test, dkim, or mail may indicate a lack of proper customization or key management. Attackers often target domains using such selectors because they suggest that the domain is relying on default configurations, which could be less secure and easier to exploit. This can increase the risk of DKIM key exposure or misuse.
Risk description
Using a common DKIM selector makes it easier for attackers to predict and exploit email authentication weaknesses. Attackers may attempt to find corresponding DKIM keys or improperly managed records associated with common selectors. If a common selector is coupled with a weak key length or poor key management practices, it significantly increases the likelihood of email spoofing and phishing attacks.
Recommendation
We recommend using unique, customized selectors for each DKIM key to make it more difficult for attackers to predict and target the domain's DKIM records. Regularly rotate selectors and associated keys to further strengthen the security of your domain's email authentication infrastructure.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
ziptrackblinds.com.sg | A | IPv4 address | 110.74.164.59 |
ziptrackblinds.com.sg | NS | Name server | ns1.newpages.us |
ziptrackblinds.com.sg | NS | Name server | ns2.newpages.us |
ziptrackblinds.com.sg | MX | Mail server | 0 ziptrackblinds.com.sg |
ziptrackblinds.com.sg | SOA | Start of Authority | ns1.newpages.us. cpanel.newpages.com.my. 2025041302 3600 1800 1209600 86400 |
ziptrackblinds.com.sg | AAAA | IPv6 address | 2403:bc00:7fff:7::8 |
ziptrackblinds.com.sg | SPF | Sender Policy Framework | "v=spf1 ip4:110.74.164.54 ip4:110.74.164.59 +a +mx ~all" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Operating System |
---|
Linux 4.4 |
Vulnerability description
OS Detection
Evidence
We managed to detect the redirect using the following Request / Response chain.
Recommendation
Vulnerability checks are skipped for ports that redirect to another port. We recommend scanning the redirected port directly.
Evidence
DKIM selector | Key type | Key size | Value |
---|---|---|---|
default | rsa | 1422 | "v=DKIM1; k=rsa; p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAyj+gP22Gmm1R8VvXMl5LBUkaCS6oQRNUD5Lyhh2ONsn5B23t/2BnL7RfbFnMLnXk2B3o6mH5Z+5fVgypt0o95IgUXYGGCPkVDh5m5qdBUTaqINuWXoSC/Dav8COvQgYep9aPSkxhLO5NldHgqnMNO4j/pDNz+M40i/AbjWq8u6Hl/sdsBJgwY/a3ukuAbE0+N" "gQ3vit/tLwLgdAoGbiiCji57SZj/qX4BaBxRaV23uzvxdlM6U2wbeENZh5MYk+WP6PU5UM+qrzHcQEDPWANuoIAAjbnHNbSeR629j361x8/AnUhImy6BALQPSeZT6OB/GcnH2N1SdYVXJjdGDcudQIDAQAB;" |
Evidence
Software / Version | Category |
---|---|
PHP | Programming languages |
Bootstrap | UI frameworks |
Apache HTTP Server | Web servers |
Google Analytics GA4 | Analytics |
HSTS | Security |
Google Ads | Advertising |
Slick | JavaScript libraries |
jQuery | JavaScript libraries |
Google Tag Manager | Tag managers |
Google Ads Conversion Tracking | Analytics |
AOS | JavaScript libraries |
PWA | Miscellaneous |
Open Graph | Miscellaneous |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.