Vulnerability Scan Result

IP address | 167.250.5.56 |
Country | AR ![]() |
AS number | - |
Net name | - |
25/tcp | smtp | - - |
80/tcp | http | nginx - |
110/tcp | pop3 | Dovecot pop3d - |
143/tcp | imap | Dovecot imapd - |
443/tcp | https | nginx - |
444/tcp | https | Apache httpd - |
465/tcp | smtp | Exim smtpd 4.96.2 |
587/tcp | smtp | Exim smtpd 4.96.2 |
993/tcp | imaps | - - |
995/tcp | pop3s | - - |
3306/tcp | mysql | MySQL 5.5.5-10.6.20-MariaDB |
8888/tcp | http | Apache httpd - |
Software / Version | Category |
---|---|
Contact Form 7 5.5.3 | WordPress plugins, Form builders |
WP-Optimize | WordPress plugins, Performance |
jQuery Migrate 3.3.2 | JavaScript libraries |
core-js 3.11.0 | JavaScript libraries |
Google Font API | Font scripts |
Retina.js | JavaScript libraries |
Isotope | JavaScript libraries |
jQuery 3.6.0 | JavaScript libraries |
Modernizr 2.8.3 | JavaScript libraries |
MySQL | Databases |
Nginx | Web servers, Reverse proxies |
PHP | Programming languages |
Twitter Emoji (Twemoji) 13.1.0 | Font scripts |
Unpkg | CDN |
WordPress 5.8.10 | CMS, Blogs |
Conditional Fields for Contact Form 7 | Widgets, WordPress plugins |
wpBakery | Page builders, WordPress plugins |
reCAPTCHA | Security |
RSS | Miscellaneous |
Slider Revolution 5.4.8.3 | Widgets, Photo galleries |
Web Application Vulnerabilities
Evidence
URL | Evidence |
---|---|
https://ex-cle.com/ | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the X-Content-Type-Options
header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://ex-cle.com/ | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy
HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://ex-cle.com/ | Response headers include the HTTP Content-Security-Policy security header with the following security issues: |
Vulnerability description
We noticed that the Content-Security-Policy (CSP) header configured for the web application includes unsafe directives. The CSP header activates a protection mechanism implemented in web browsers which prevents exploitation of Cross-Site Scripting vulnerabilities (XSS) by restricting the sources from which content can be loaded or executed.
Risk description
For example, if the unsafe-inline directive is present in the CSP header, the execution of inline scripts and event handlers is allowed. This can be exploited by an attacker to execute arbitrary JavaScript code in the context of the vulnerable application.
Recommendation
Remove the unsafe values from the directives, adopt nonces or hashes for safer inclusion of inline scripts if they are needed, and explicitly define the sources from which scripts, styles, images or other resources can be loaded.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://ex-cle.com/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Risk description
The risk is that lack of this header permits an attacker to force a victim user to initiate a clear-text HTTP connection to the server, thus opening the possibility to eavesdrop on the network traffic and extract sensitive information (e.g. session cookies).
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Software / Version | Category |
---|---|
Contact Form 7 5.5.3 | WordPress plugins, Form builders |
WP-Optimize | WordPress plugins, Performance |
jQuery Migrate 3.3.2 | JavaScript libraries |
core-js 3.11.0 | JavaScript libraries |
Google Font API | Font scripts |
Retina.js | JavaScript libraries |
Isotope | JavaScript libraries |
jQuery 3.6.0 | JavaScript libraries |
Modernizr 2.8.3 | JavaScript libraries |
MySQL | Databases |
Nginx | Web servers, Reverse proxies |
PHP | Programming languages |
Twitter Emoji (Twemoji) 13.1.0 | Font scripts |
Unpkg | CDN |
WordPress 5.8.10 | CMS, Blogs |
Conditional Fields for Contact Form 7 | Widgets, WordPress plugins |
wpBakery | Page builders, WordPress plugins |
reCAPTCHA | Security |
RSS | Miscellaneous |
Slider Revolution 5.4.8.3 | Widgets, Photo galleries |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
Website is accessible.
Evidence
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Infrastructure Vulnerabilities
Evidence
We managed to detect a publicly accessible MySQL service.
PORT STATE SERVICE VERSION
3306/tcp open mysql MySQL 5.5.5-10.6.20-MariaDB
Vulnerability description
We identified that the MySQL service is publicly accessible. MySQL serves as a common database for numerous web applications and services for data storage, making it a potential prime target for determined attackers.
Risk description
The risk exists that an attacker exploits this issue by launching a password-based attack on the MySQL service. Furthermore, they could exploit zero-day vulnerabilities to obtain remote access to the MySQL database server, thereby gaining complete control over its operating system and associated services. Such an attack could lead to the exposure of confidential or sensitive information.
Recommendation
We recommend turning off public Internet access to MySQL and opting for a Virtual Private Network (VPN) that enforces two-factor authentication (2FA). Avoid enabling direct user authentication to the MySQL service via the Internet, as this could enable attackers to engage in password-guessing and potentially initiate attacks leading to complete control. However, if the MySQL service is required to be directly accessible over the Internet, we recommend reconfiguring it to be accessible only from known IP addresses.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
ex-cle.com | SPF | Sender Policy Framework | "v=spf1 +mx +a +ip4:167.250.5.56 ~all" |
Vulnerability description
We found that the Sender Policy Framework (SPF) record for the domain is configured with ~all (soft fail), which indicates that emails from unauthorized IP addresses are not explicitly denied. Instead, the recipient mail server is instructed to treat these messages with suspicion but may still accept them. This configuration may not provide enough protection against email spoofing and unauthorized email delivery, leaving the domain more vulnerable to impersonation attempts.
Risk description
The ~all directive in an SPF record allows unauthorized emails to pass through some email servers, even though they fail SPF verification. While such emails may be marked as suspicious or placed into a spam folder, not all mail servers handle soft fail conditions consistently. This creates a risk that malicious actors can spoof the domain to send phishing emails or other fraudulent communications, potentially causing damage to the organization's reputation and leading to successful social engineering attacks.
Recommendation
We recommend changing the SPF record's ~all (soft fail) directive to -all (hard fail). The -all setting tells recipient mail servers to reject emails from any IP addresses not listed in the SPF record, providing stronger protection against email spoofing. Ensure that all legitimate IP addresses and services that send emails on behalf of your domain are properly included in the SPF record before implementing this change.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.ex-cle.com | TXT | Text record | "v=DMARC1;p=quarantine;sp=none;adkim=r;aspf=r;pct=20;fo=0;rf=afrf;ri=86400;rua=mailto:admin@ex-cle.com" |
Vulnerability description
We found that the DMARC record for the domain is configured with sp=none, meaning that no policy is enforced for subdomains. This allows subdomains to send emails without being subject to DMARC checks, making it easier for attackers to spoof emails from these subdomains. Subdomains are often overlooked in email security, and attackers can exploit this misconfiguration to launch phishing or spoofing attacks from seemingly legitimate subdomains of a protected domain.
Risk description
When the DMARC record is configured with sp=none, subdomains are not subject to DMARC enforcement, allowing attackers to spoof emails from subdomains without being blocked. This creates a significant risk of phishing and impersonation attacks, where malicious emails appear to originate from trusted subdomains. These spoofed emails can be used to deceive users or damage the organization's reputation, undermining the security benefits of DMARC for the primary domain.
Recommendation
To mitigate the risk, we recommend that the subdomain policy should be updated to sp=reject to ensure that any email failing DMARC checks from subdomains is automatically rejected. This will help prevent unauthorized emails from being sent from subdomains, reducing the risk of spoofing and phishing. Additionally, it's important to regularly monitor DMARC reports to track email activity from subdomains and adjust policies as needed to maintain consistent security across the entire domain.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.ex-cle.com | TXT | Text record | "v=DMARC1;p=quarantine;sp=none;adkim=r;aspf=r;pct=20;fo=0;rf=afrf;ri=86400;rua=mailto:admin@ex-cle.com" |
Vulnerability description
We found that the DMARC record for the domain is not configured with ruf tag. A missing ruf (forensic reporting) tag in a DMARC record indicates that the domain owner has not enabled the collection of detailed failure reports. Forensic reports provide valuable insights into specific instances where emails fail DMARC authentication. Without the ruf tag, the domain administrator loses the ability to receive and analyze these reports, making it difficult to investigate individual email failures or identify targeted phishing or spoofing attacks that may be exploiting weaknesses in the email authentication setup.
Risk description
Without forensic reports (ruf), domain owners have limited visibility into the specifics of failed DMARC validation. This means potential malicious activity, such as email spoofing or phishing attempts, might go unnoticed until they result in more significant security breaches or reputational damage. Forensic reports allow for quick response to email abuses by providing detailed information about the failure, including the header information of the emails involved. The absence of this data hampers an organization's ability to identify and mitigate threats targeting its domain, increasing the risk of ongoing spoofing and fraud.
Recommendation
We recommend configuring the ruf tag in the DMARC record. This tag specifies where forensic reports should be sent, providing the domain owner with detailed data on DMARC validation failures. Forensic reports allow administrators to analyze why certain emails failed authentication, making it easier to fine-tune DMARC policies or address potential vulnerabilities. Ensure that the ruf email address belongs to a secure and trusted location capable of handling sensitive email data.
Evidence
DKIM selector | Key type | Key size | Value |
---|---|---|---|
default | rsa | 1422 | "v=DKIM1; k=rsa; p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAw3BWZNagbzLLYopbLFvfGfuHq5Sd5wevaVVw2juilqcqiYKVyUol01MV3A1X0SuxmASnWRaVcS5NW9u9F8RLV0A0EcQJGQBCXfwmTVp2AnjO4O3vARtqYz4r6n0X5OBgFZsVIAiIvcr0VNm9IeKr2M30zsupWgSdbMjL6UVkBCdaTSga5ND9nHHEYMoHKkBGz" "nzmWKQ3cmb9QkcLUgY4MbzlcaVjwtOz4Y2Ym1wJfiNvw4MQTZomxWERZBISbbyO5w6t0wfVTWvZjGhtBrFNbNPwXbUVMQeb3zvnNy6ZLe03h/EO1a53CsdYn4J/0L3Y9ZOhO2YRZrNyGVpBMEC0fQIDAQAB;" |
Vulnerability description
We found that the DKIM record uses common selectors. The use of common DKIM selectors such as default, test, dkim, or mail may indicate a lack of proper customization or key management. Attackers often target domains using such selectors because they suggest that the domain is relying on default configurations, which could be less secure and easier to exploit. This can increase the risk of DKIM key exposure or misuse.
Risk description
Using a common DKIM selector makes it easier for attackers to predict and exploit email authentication weaknesses. Attackers may attempt to find corresponding DKIM keys or improperly managed records associated with common selectors. If a common selector is coupled with a weak key length or poor key management practices, it significantly increases the likelihood of email spoofing and phishing attacks.
Recommendation
We recommend using unique, customized selectors for each DKIM key to make it more difficult for attackers to predict and target the domain's DKIM records. Regularly rotate selectors and associated keys to further strengthen the security of your domain's email authentication infrastructure.
Evidence
We managed to detect that Exim smtpd has reached the End-of-Life (EOL).
Version detected: 4.96.2 End-of-life date: 2023-11-04 Latest version for the cycle: 4.96.2 This release cycle (4.96) doesn't have long-term-support (LTS). The cycle was released on 2022-06-25 and its latest release date was 2023-10-15.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
We managed to detect that Exim smtpd has reached the End-of-Life (EOL).
Version detected: 4.96.2 End-of-life date: 2023-11-04 Latest version for the cycle: 4.96.2 This release cycle (4.96) doesn't have long-term-support (LTS). The cycle was released on 2022-06-25 and its latest release date was 2023-10-15.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
We managed to detect that MySQL has reached the End-of-Life (EOL).
Version detected: 5.5.5-10.6.20-mariadb End-of-life date: 2018-12-31 Latest version for the cycle: 5.5.63 This release cycle (5.5) doesn't have long-term-support (LTS). The cycle was released on 2010-12-03 and its latest release date was 2018-12-21. The support ended on 2015-12-31.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
ex-cle.com | A | IPv4 address | 167.250.5.56 |
ex-cle.com | NS | Name server | dns2.servidoraweb.net |
ex-cle.com | NS | Name server | dns1.servidoraweb.net |
ex-cle.com | MX | Mail server | 0 ex-cle.com |
ex-cle.com | MX | Mail server | 10 mail.ex-cle.com |
ex-cle.com | SOA | Start of Authority | dns1.servidoraweb.net. servers.servidoraweb.net. 2025041700 3600 1800 1209600 86400 |
ex-cle.com | TXT | Text record | "26m1bp9xfd6wjsfxdmlvffx6l90vsdph" |
ex-cle.com | TXT | Text record | "lmpbwkt74fnv42k20kyggwvrgbpbhbb0" |
ex-cle.com | SPF | Sender Policy Framework | "v=spf1 +mx +a +ip4:167.250.5.56 ~all" |
_dmarc.ex-cle.com | TXT | Text record | "v=DMARC1;p=quarantine;sp=none;adkim=r;aspf=r;pct=20;fo=0;rf=afrf;ri=86400;rua=mailto:admin@ex-cle.com" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Operating System |
---|
Linux 4.4 |
Vulnerability description
OS Detection
Evidence
DKIM selector | Key type | Key size | Value |
---|---|---|---|
default | rsa | 1422 | "v=DKIM1; k=rsa; p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAw3BWZNagbzLLYopbLFvfGfuHq5Sd5wevaVVw2juilqcqiYKVyUol01MV3A1X0SuxmASnWRaVcS5NW9u9F8RLV0A0EcQJGQBCXfwmTVp2AnjO4O3vARtqYz4r6n0X5OBgFZsVIAiIvcr0VNm9IeKr2M30zsupWgSdbMjL6UVkBCdaTSga5ND9nHHEYMoHKkBGz" "nzmWKQ3cmb9QkcLUgY4MbzlcaVjwtOz4Y2Ym1wJfiNvw4MQTZomxWERZBISbbyO5w6t0wfVTWvZjGhtBrFNbNPwXbUVMQeb3zvnNy6ZLe03h/EO1a53CsdYn4J/0L3Y9ZOhO2YRZrNyGVpBMEC0fQIDAQAB;" |
Evidence
Software / Version | Category |
---|---|
WordPress | CMS, Blogs |
MySQL | Databases |
PHP | Programming languages |
Nginx | Web servers, Reverse proxies |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.