Vulnerability Scan Result

IP address | 46.234.101.1 |
Country | CZ ![]() |
AS number | AS39392 |
Net name | Sh S.r.o |
21/tcp | ftp | - - |
25/tcp | smtp | Postfix smtpd - |
80/tcp | http | Apache httpd - |
110/tcp | pop3 | Dovecot pop3d - |
143/tcp | imap | Dovecot imapd - |
443/tcp | https | - - |
465/tcp | smtp | Postfix smtpd - |
587/tcp | smtp | Postfix smtpd - |
993/tcp | imap | - - |
995/tcp | pop3 | - - |
Software / Version | Category |
---|---|
Google Font API | Font scripts |
Open Graph | Miscellaneous |
Google Sites | CMS |
reCAPTCHA | Security |
Web Application Vulnerabilities
Evidence
URL | Evidence |
---|---|
https://www.rychlecistenipraha.cz/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Risk description
The risk is that lack of this header permits an attacker to force a victim user to initiate a clear-text HTTP connection to the server, thus opening the possibility to eavesdrop on the network traffic and extract sensitive information (e.g. session cookies).
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://www.rychlecistenipraha.cz/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Credit Card Number: 2658227848101267 |
Vulnerability description
We noticed that this application does not properly prevent a person's private, personal information from being accessed by actors who either (1) are not explicitly authorized to access the information or (2) do not have the implicit consent of the person about whom the information is collected. Sensitive data targeted usually consists of emails, credit card and social security numbers.
Risk description
The risk exists that sensitive personal information within the application could be accessed by unauthorized parties. This could lead to privacy violations, identity theft, or other forms of personal or corporate harm.
Recommendation
Compartmentalize the application to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.
Evidence
URL | Evidence |
---|---|
https://www.rychlecistenipraha.cz/ | Response headers include the HTTP Content-Security-Policy security header with the following security issues: |
Vulnerability description
We noticed that the Content-Security-Policy (CSP) header configured for the web application includes unsafe directives. The CSP header activates a protection mechanism implemented in web browsers which prevents exploitation of Cross-Site Scripting vulnerabilities (XSS) by restricting the sources from which content can be loaded or executed.
Risk description
For example, if the unsafe-inline directive is present in the CSP header, the execution of inline scripts and event handlers is allowed. This can be exploited by an attacker to execute arbitrary JavaScript code in the context of the vulnerable application.
Recommendation
Remove the unsafe values from the directives, adopt nonces or hashes for safer inclusion of inline scripts if they are needed, and explicitly define the sources from which scripts, styles, images or other resources can be loaded.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Software / Version | Category |
---|---|
Google Font API | Font scripts |
Open Graph | Miscellaneous |
Google Sites | CMS |
reCAPTCHA | Security |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
Website is accessible.
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://www.rychlecistenipraha.cz/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Email Address: info@rychlecistenipraha.cz |
Vulnerability description
We noticed that this web application exposes email addresses, which might be unintended. While not inherently a vulnerability, this information could be leveraged in social engineering or spam related activities.
Risk description
The risk is that exposed email addresses within the application could be accessed by unauthorized parties. This could lead to privacy violations, spam, phishing attacks, or other forms of misuse.
Recommendation
Compartmentalize the application to have 'safe' areas where trust boundaries can be unambiguously drawn. Do not allow email addresses to go outside of the trust boundary, and always be careful when interfacing with a compartment outside of the safe area.
Classification
CWE | CWE-200 |
OWASP Top 10 - 2017 | A6: Security Misconfiguration |
OWASP Top 10 - 2021 | A4: Insecure Design |
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Method | Summary |
---|---|---|
https://www.rychlecistenipraha.cz/ | OPTIONS | We did a HTTP OPTIONS request. The server responded with a 200 status code and the header: `Allow: HEAD, GET` Request / Response |
Vulnerability description
We have noticed that the webserver responded with an Allow HTTP header when an OPTIONS HTTP request was sent. This method responds to requests by providing information about the methods available for the target resource.
Risk description
The only risk this might present nowadays is revealing debug HTTP methods that can be used on the server. This can present a danger if any of those methods can lead to sensitive information, like authentication information, secret keys.
Recommendation
We recommend that you check for unused HTTP methods or even better, disable the OPTIONS method. This can be done using your webserver configuration.
Classification
CWE | CWE-16 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Infrastructure Vulnerabilities
Evidence
We managed to detect a publicly accessible Post Office Protocol (POP3) service.
Starting Nmap ( https://nmap.org ) at 2025-05-23 22:28 EEST
Nmap scan report for rychlecistenipraha.cz (46.234.101.1)
Host is up (0.022s latency).
rDNS record for 46.234.101.1: lla03.vas-server.cz
PORT STATE SERVICE VERSION
110/tcp filtered pop3
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 1.37 seconds
Vulnerability description
We found that the Post Office Protocol (POP3) service is publicly accessible and doesn’t include STARTTLS capability. Email clients use the Post Office Protocol (POP) to download emails for user accounts. Some POP servers are initially set up to operate over an unsecured protocol. When email clients download email content through this plaintext protocol, it can pose a substantial risk to the organization's network, especially depending on which user account is set to receive the emails.
Risk description
Exposing this service online can enable attackers to conduct man-in-the-middle attacks, thereby gaining access to sensitive user credentials and the contents of emails. Given that POP3 operates via a plaintext protocol, the entirety of the data exchanged between the client and server is left unencrypted. This critical information could then be leveraged in further attacks on the organization's network.
Recommendation
We recommend turning off POP3 access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the POP3 service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, activating STARTTLS capability (switching the connection to a secure communication) or utilizing Secure POP3 (POP3S) is recommended, as this protocol employs encryption.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
rychlecistenipraha.cz | TXT | Text record | "google-site-verification=aIcSZ1gHOulVZK8VI0Yah3nLK1cFene_M-sruWRPcu0" |
Vulnerability description
We found that the target server has no DMARC policy configured. A missing DMARC (Domain-based Message Authentication, Reporting, and Conformance) policy means that the domain is not enforcing any DMARC policies to protect against email spoofing and phishing attacks. Without DMARC, even if SPF (Sender Policy Framework) or DKIM (DomainKeys Identified Mail) are configured, there is no mechanism to tell receiving email servers how to handle messages that fail authentication. This leaves the domain vulnerable to abuse, such as email spoofing and impersonation.
Risk description
Without a DMARC policy, your domain is highly vulnerable to email spoofing, allowing attackers to impersonate your brand and send fraudulent emails that appear legitimate. This can lead to phishing attacks targeting your customers, employees, or partners, potentially resulting in stolen credentials, financial loss, or unauthorized access to sensitive systems. Additionally, repeated spoofing attempts can severely damage your brand's reputation, as recipients may lose trust in communications from your domain, associating your brand with malicious activity. The absence of DMARC also prevents you from monitoring and mitigating email-based attacks, leaving your domain exposed to ongoing abuse.
Recommendation
We recommend implementing a DMARC policy for your domain. Start by configuring a DMARC record with a policy of p=none, which will allow you to monitor email flows without impacting legitimate emails. This initial setup helps identify how emails from your domain are being processed by recipient servers. Once you’ve verified that legitimate emails are passing SPF and DKIM checks, you can gradually enforce stricter policies like p=quarantine or p=reject to protect against spoofing and phishing attacks. Additionally, include rua and ruf email addresses in the DMARC record to receive aggregate and forensic reports. These reports will provide valuable insights into authentication failures and help you detect any spoofing attempts.
Evidence
We checked 2056 selectors but found no DKIM records.
Vulnerability description
We found that no DKIM record was configured. When a DKIM (DomainKeys Identified Mail) record is not present for a domain, it means that outgoing emails from that domain are not cryptographically signed. DKIM is a critical component of email authentication, allowing recipients to verify that an email was genuinely sent from an authorized server and that the message has not been altered in transit. The absence of a DKIM record leaves the domain vulnerable to email spoofing and phishing attacks, as attackers can send fraudulent emails that appear to originate from the domain without any cryptographic verification.
Risk description
Without a DKIM record, recipients have no way of verifying the integrity or authenticity of emails sent from the domain. This increases the likelihood of phishing and spoofing attacks, where malicious actors impersonate the domain to send fraudulent emails. This can lead to significant security incidents, such as credential theft, financial fraud, or the distribution of malware. Additionally, many email providers use DKIM as part of their spam and reputation filters, meaning that emails from a domain without DKIM may be flagged as spam or rejected, impacting the deliverability and reputation of legitimate emails.
Recommendation
We recommend implementing DKIM for your domain to enhance email security and protect your brand from email-based attacks. Generate a DKIM key pair (public and private keys), publish the public key in the DNS under the appropriate selector, and configure your email servers to sign outgoing messages using the private key. Ensure that the DKIM key length is at least 1024 bits to prevent cryptographic attacks. Regularly monitor DKIM signatures to ensure the system is functioning correctly and update keys periodically to maintain security.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
rychlecistenipraha.cz | A | IPv4 address | 46.234.101.1 |
rychlecistenipraha.cz | NS | Name server | ns.vas-hosting.com |
rychlecistenipraha.cz | NS | Name server | ns.vas-hosting.eu |
rychlecistenipraha.cz | NS | Name server | ns.vas-hosting.cz |
rychlecistenipraha.cz | MX | Mail server | 20 7d199c0aebad428c.mx1.emailprofi.seznam.cz |
rychlecistenipraha.cz | MX | Mail server | 10 7d199c0aebad428c.mx2.emailprofi.seznam.cz |
rychlecistenipraha.cz | SOA | Start of Authority | ns.vas-hosting.cz. info.vas-hosting.cz. 2505231240 28800 600 2419200 3600 |
rychlecistenipraha.cz | TXT | Text record | "google-site-verification=aIcSZ1gHOulVZK8VI0Yah3nLK1cFene_M-sruWRPcu0" |
rychlecistenipraha.cz | SPF | Sender Policy Framework | "v=spf1 a mx ?all" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Operating System | Accuracy |
---|---|
Fortinet FortiGate 100D firewall | 88% |
Vulnerability description
OS Detection
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
rychlecistenipraha.cz | SPF | Sender Policy Framework | "v=spf1 a mx ?all" |