Vulnerability Scan Result

IP address | 50.62.137.56 |
Country | US ![]() |
AS number | AS398101 |
Net name | Godaddy LLC |
70/tcp | ssh | OpenSSH 8 |
2082/tcp | http | - - |
2083/tcp | https | - - |
2086/tcp | http | - - |
2087/tcp | https | - - |
Software / Version | Category |
---|---|
Font Awesome 4.6.3 | Font scripts |
Bootstrap 3.3.6 | UI frameworks |
Google Analytics GA4 | Analytics |
Apache HTTP Server | Web servers |
jQuery 2.2.0 | JavaScript libraries |
PHP 8.4.7 | Programming languages |
Google Tag Manager | Tag managers |
Web Application Vulnerabilities
Evidence
Risk Level | CVSS | CVE | Summary | Affected software |
---|---|---|---|---|
6.4 | CVE-2024-6484 | A vulnerability has been identified in Bootstrap that exposes users to Cross-Site Scripting (XSS) attacks. The issue is present in the carousel component, where the data-slide and data-slide-to attributes can be exploited through the href attribute of an <a> tag due to inadequate sanitization. This vulnerability could potentially enable attackers to execute arbitrary JavaScript within the victim's browser. | bootstrap 3.3.6 | |
4.3 | CVE-2018-14040 | In Bootstrap before 4.1.2, XSS is possible in the collapse data-parent attribute. | bootstrap 3.3.6 | |
4.3 | CVE-2018-14042 | In Bootstrap before 4.1.2, XSS is possible in the data-container property of tooltip. | bootstrap 3.3.6 | |
4.3 | CVE-2016-10735 | In Bootstrap 3.x before 3.4.0 and 4.x-beta before 4.0.0-beta.2, XSS is possible in the data-target attribute, a different vulnerability than CVE-2018-14041. | bootstrap 3.3.6 | |
4.3 | CVE-2018-20676 | In Bootstrap before 3.4.0, XSS is possible in the tooltip data-viewport attribute. | bootstrap 3.3.6 | |
4.3 | CVE-2015-9251 | jQuery before 3.0.0 is vulnerable to Cross-site Scripting (XSS) attacks when a cross-domain Ajax request is performed without the dataType option, causing text/javascript responses to be executed. | jquery 2.2.0 | |
4.3 | CVE-2019-11358 | jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles jQuery.extend(true, {}, ...) because of Object.prototype pollution. If an unsanitized source object contained an enumerable __proto__ property, it could extend the native Object.prototype. | jquery 2.2.0 | |
4.3 | CVE-2020-11023 | In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | jquery 2.2.0 | |
4.3 | CVE-2020-11022 | In jQuery versions greater than or equal to 1.2 and before 3.5.0, passing HTML from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | jquery 2.2.0 |
Vulnerability description
We noticed known vulnerabilities in the target application based on the server responses. They are usually related to outdated systems and expose the affected applications to the risk of unauthorized access to confidential data and possibly denial of service attacks. Depending on the system distribution the affected software can be patched but displays the same version, requiring manual checking.
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system. Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed 'high' severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1026 |
OWASP Top 10 - 2017 | A9 - Using Components with Known Vulnerabilities |
OWASP Top 10 - 2021 | A6 - Vulnerable and Outdated Components |
Evidence
URL | Cookie Name | Evidence |
---|---|---|
https://www.coopava.com.co/es/ | wb_session | Set-Cookie: wb_session=497076ecb43fd859817b7adf835e7909 |
Vulnerability description
We found that a cookie has been set without the Secure
flag, which means the browser will send it over an unencrypted channel (plain HTTP) if such a request is made. The root cause for this usually revolves around misconfigurations in the code or server settings.
Risk description
The risk exists that an attacker will intercept the clear-text communication between the browser and the server and he will steal the cookie of the user. If this is a session cookie, the attacker could gain unauthorized access to the victim's web session.
Recommendation
Whenever a cookie contains sensitive information or is a session token, then it should always be passed using an encrypted channel. Ensure that the secure flag is set for cookies containing such sensitive information.
Classification
CWE | CWE-614 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Cookie Name | Evidence |
---|---|---|
https://www.coopava.com.co/es/ | wb_session | Set-Cookie: .coopava.com.co |
Vulnerability description
We found that the target application sets cookies with a domain scope that is too broad. Specifically, cookies intended for use within a particular application are configured in such a way that they can be accessed by multiple subdomains of the same primary domain.
Risk description
The risk is that a cookie set for example.com may be sent along with the requests sent to dev.example.com, calendar.example.com, hostedsite.example.com. Potentially risky websites under your main domain may access those cookies and use the victim session from the main site.
Recommendation
The `Domain` attribute should be set to the origin host to limit the scope to that particular server. For example if the application resides on server app.mysite.com, then it should be set to `Domain=app.mysite.com`
Classification
CWE | CWE-614 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.coopava.com.co/es/ | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the X-Content-Type-Options
header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.coopava.com.co/es/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.coopava.com.co/es/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Risk description
The risk is that lack of this header permits an attacker to force a victim user to initiate a clear-text HTTP connection to the server, thus opening the possibility to eavesdrop on the network traffic and extract sensitive information (e.g. session cookies).
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://www.coopava.com.co/es/ | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy
HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://www.coopava.com.co/es/QuieneSomos/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Suspicious message PHP Error found in: |
Vulnerability description
We noticed that the target application's debug messages reveal unnecessary information about the system's internal state. For example, debug data in design can be exposed through internal memory array dumps or boot logs through interfaces like UART via TAP commands, scan chain, etc. Thus, the more information contained in a debug message, the easier it is to debug.
Risk description
The risk of revealing debug information is that it could help an attacker either decipher a vulnerability, and/or gain a better understanding of the system. Thus, this extra information could lower the “security by obscurity” factor. While “security by obscurity” alone is insufficient, it can help as a part of “Defense-in-depth”.
Recommendation
Ensure that a debug message does not reveal any unnecessary information during the debug process for the intended response.
Classification
CWE | CWE-209 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A4 - Insecure Design |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://www.coopava.com.co/es/QuieneSomos/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 Cookies: wb_session=ac4721faacc41113707274ba245da975 |
|
Vulnerability description
We noticed that the target application is serving mixed content. This occurs when initial HTML is loaded over a secure HTTPS connection, but other resources (such as images, videos, stylesheets, scripts) are loaded over an insecure HTTP connection. This is called mixed content because both HTTP and HTTPS content are being loaded to display the same page, and the initial request was secure over HTTPS.
Risk description
The risk is that the insecurely loaded resources (HTTP) on an otherwise secure page (HTTPS) can be intercepted or manipulated by attackers, potentially leading to eavesdropping or content tampering.
Recommendation
Ensure that all external resources the page references are loaded using HTTPS.
Classification
CWE | CWE-311 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://www.coopava.com.co/es/QuieneSomos/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 Cookies: wb_session=ac4721faacc41113707274ba245da975 | Error message PHP Error found in: |
Vulnerability description
We noticed that the target application does not properly handle exceptional conditions, leading to error messages that reveal sensitive information.
Risk description
The risk is that an attacker may use the contents of error messages to help launch another, more focused attack. For example, an attempt to exploit a path traversal weakness (CWE-22) might yield the full pathname of the installed application.
Recommendation
It is recommended treating all exceptions of the application flow. Ensure that error messages only contain minimal details.
Classification
CWE | CWE-209 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A4 - Insecure Design |
Evidence
Software / Version | Category |
---|---|
Font Awesome 4.6.3 | Font scripts |
Bootstrap 3.3.6 | UI frameworks |
Google Analytics GA4 | Analytics |
Apache HTTP Server | Web servers |
jQuery 2.2.0 | JavaScript libraries |
PHP 8.4.7 | Programming languages |
Google Tag Manager | Tag managers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
Website is accessible.
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://www.coopava.com.co/es/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Email Address: chat_coop18@mailna.co |
Vulnerability description
We noticed that this web application exposes email addresses, which might be unintended. While not inherently a vulnerability, this information could be leveraged in social engineering or spam related activities.
Risk description
The risk is that exposed email addresses within the application could be accessed by unauthorized parties. This could lead to privacy violations, spam, phishing attacks, or other forms of misuse.
Recommendation
Compartmentalize the application to have 'safe' areas where trust boundaries can be unambiguously drawn. Do not allow email addresses to go outside of the trust boundary, and always be careful when interfacing with a compartment outside of the safe area.
Classification
CWE | CWE-200 |
OWASP Top 10 - 2017 | A6: Security Misconfiguration |
OWASP Top 10 - 2021 | A4: Insecure Design |
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://www.coopava.com.co/es/Cooperativa/estatutos | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 Cookies: wb_session=9793bfbb6f8d1532bbc62f36e68a8fd0 | Operating system paths found in the HTTP response: |
https://www.coopava.com.co/es/QuieneSomos/ | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Operating system paths found in the HTTP response: |
Vulnerability description
We found operating system paths returned in a HTTP response.
Risk description
The risk is that path disclosure may help an attacker learn more about the remote server's file system, thus increasing the effectiveness and precision of any future attacks.
Recommendation
Configure the web server to avoid leaking path information by using generic error messages that do not reveal any internal file paths. Make sure no server file is referred with its absolute path in the website code.
Classification
CWE | CWE-200 |
OWASP Top 10 - 2017 | |
OWASP Top 10 - 2021 |
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Infrastructure Vulnerabilities
Evidence
CVE | CVSS | CISA KEV | Summary |
---|---|---|---|
CVE-2023-38408 | 9.8 | No | The PKCS#11 feature in ssh-agent in OpenSSH before 9.3p2 has an insufficiently trustworthy search path, leading to remote code execution if an agent is forwarded to an attacker-controlled system. (Code in /usr/lib is not necessarily safe for loading into ssh-agent.) NOTE: this issue exists because of an incomplete fix for CVE-2016-10009. |
CVE-2020-15778 | 6.8 | No | scp in OpenSSH through 8.3p1 allows command injection in the scp.c toremote function, as demonstrated by backtick characters in the destination argument. NOTE: the vendor reportedly has stated that they intentionally omit validation of "anomalous argument transfers" because that could "stand a great chance of breaking existing workflows." |
CVE-2025-26465 | 6.8 | No | A vulnerability was found in OpenSSH when the VerifyHostKeyDNS option is enabled. A machine-in-the-middle attack can be performed by a malicious machine impersonating a legit server. This issue occurs due to how OpenSSH mishandles error codes in specific conditions when verifying the host key. For an attack to be considered successful, the attacker needs to manage to exhaust the client's memory resource first, turning the attack complexity high. |
CVE-2023-51385 | 6.5 | No | In ssh in OpenSSH before 9.6, OS command injection might occur if a user name or host name has shell metacharacters, and this name is referenced by an expansion token in certain situations. For example, an untrusted Git repository can have a submodule with shell metacharacters in a user name or host name. |
CVE-2023-48795 | 5.9 | No | The SSH transport protocol with certain OpenSSH extensions, found in OpenSSH before 9.6 and other products, allows remote attackers to bypass integrity checks such that some packets are omitted (from the extension negotiation message), and a client and server may consequently end up with a connection for which some security features have been downgraded or disabled, aka a Terrapin attack. This occurs because the SSH Binary Packet Protocol (BPP), implemented by these extensions, mishandles the handshake phase and mishandles use of sequence numbers. For example, there is an effective attack against SSH's use of ChaCha20-Poly1305 (and CBC with Encrypt-then-MAC). The bypass occurs in chacha20-poly1305@openssh.com and (if CBC is used) the -etm@openssh.com MAC algorithms. This also affects Maverick Synergy Java SSH API before 3.1.0-SNAPSHOT, Dropbear through 2022.83, Ssh before 5.1.1 in Erlang/OTP, PuTTY before 0.80, AsyncSSH before 2.14.2, golang.org/x/crypto before 0.17.0, libssh before 0.10.6, libssh2 through 1.11.0, Thorn Tech SFTP Gateway before 3.4.6, Tera Term before 5.1, Paramiko before 3.4.0, jsch before 0.2.15, SFTPGo before 2.5.6, Netgate pfSense Plus through 23.09.1, Netgate pfSense CE through 2.7.2, HPN-SSH through 18.2.0, ProFTPD before 1.3.8b (and before 1.3.9rc2), ORYX CycloneSSH before 2.3.4, NetSarang XShell 7 before Build 0144, CrushFTP before 10.6.0, ConnectBot SSH library before 2.2.22, Apache MINA sshd through 2.11.0, sshj through 0.37.0, TinySSH through 20230101, trilead-ssh2 6401, LANCOM LCOS and LANconfig, FileZilla before 3.66.4, Nova before 11.8, PKIX-SSH before 14.4, SecureCRT before 9.4.3, Transmit5 before 5.10.4, Win32-OpenSSH before 9.5.0.0p1-Beta, WinSCP before 6.2.2, Bitvise SSH Server before 9.32, Bitvise SSH Client before 9.33, KiTTY through 0.76.1.13, the net-ssh gem 7.2.0 for Ruby, the mscdex ssh2 module before 1.15.0 for Node.js, the thrussh library before 0.35.1 for Rust, and the Russh crate before 0.40.2 for Rust. |
Vulnerability description
Vulnerabilities found for Openssh 8.0
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
coopava.com.co | SPF | Sender Policy Framework | "v=spf1 include:spf.cloud.em.secureserver.net include:spf.em.secureserver.net include:_spf.google.com ~all" |
Vulnerability description
We found that the Sender Policy Framework (SPF) record for the domain is configured with ~all (soft fail), which indicates that emails from unauthorized IP addresses are not explicitly denied. Instead, the recipient mail server is instructed to treat these messages with suspicion but may still accept them. This configuration may not provide enough protection against email spoofing and unauthorized email delivery, leaving the domain more vulnerable to impersonation attempts.
Risk description
The ~all directive in an SPF record allows unauthorized emails to pass through some email servers, even though they fail SPF verification. While such emails may be marked as suspicious or placed into a spam folder, not all mail servers handle soft fail conditions consistently. This creates a risk that malicious actors can spoof the domain to send phishing emails or other fraudulent communications, potentially causing damage to the organization's reputation and leading to successful social engineering attacks.
Recommendation
We recommend changing the SPF record's ~all (soft fail) directive to -all (hard fail). The -all setting tells recipient mail servers to reject emails from any IP addresses not listed in the SPF record, providing stronger protection against email spoofing. Ensure that all legitimate IP addresses and services that send emails on behalf of your domain are properly included in the SPF record before implementing this change.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.coopava.com.co | TXT | Text record | "v=DMARC1; p=none; rua=mailto:report@dmarc.cloud2.em.secureserver.net" |
Vulnerability description
We found that the target uses p=none in the DMARC policy. The DMARC policy set to p=none means that the domain owner is not taking any action on emails that fail DMARC validation. This configuration effectively disables enforcement, allowing potentially spoofed or fraudulent emails to be delivered without any additional scrutiny.
Risk description
Emails that fail DMARC checks are still delivered to recipients. This leaves the domain highly vulnerable to email spoofing and phishing attacks, as malicious actors can impersonate the domain without facing any consequences from DMARC enforcement.
Recommendation
We recommend changing the DMARC policy to p=quarantine or, ideally, p=reject to actively block or quarantine emails that fail DMARC validation. This will enhance the security of your domain against spoofing and phishing attacks by ensuring that only legitimate emails are delivered.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.coopava.com.co | TXT | Text record | "v=DMARC1; p=none; rua=mailto:report@dmarc.cloud2.em.secureserver.net" |
Vulnerability description
We found that the DMARC record for the domain is not configured with sp policy, meaning that no policy is enforced for subdomains. When a DMARC record does not include a subdomain policy (sp directive), subdomains are not explicitly covered by the main domain's DMARC policy. This means that emails sent from subdomains (e.g., sub.example.com) may not be subject to the same DMARC enforcement as the main domain (example.com). As a result, attackers could potentially spoof emails from subdomains without being blocked or flagged, even if the main domain has a strict DMARC policy.
Risk description
Without a subdomain policy (sp directive) in the DMARC record, subdomains are not protected by the same DMARC enforcement as the main domain, leaving them vulnerable to spoofing attacks. This inconsistency can be exploited by attackers to send phishing emails from subdomains, undermining the organization’s overall email security.
Recommendation
To mitigate the risk, we recommend configuring the DMARC record with a subdomain policy by adding the sp=reject or sp=quarantine directive. This will extend DMARC enforcement to all subdomains, preventing spoofing attempts and maintaining consistent security across both the main domain and its subdomains.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.coopava.com.co | TXT | Text record | "v=DMARC1; p=none; rua=mailto:report@dmarc.cloud2.em.secureserver.net" |
Vulnerability description
We found that the DMARC record for the domain is not configured with ruf tag. A missing ruf (forensic reporting) tag in a DMARC record indicates that the domain owner has not enabled the collection of detailed failure reports. Forensic reports provide valuable insights into specific instances where emails fail DMARC authentication. Without the ruf tag, the domain administrator loses the ability to receive and analyze these reports, making it difficult to investigate individual email failures or identify targeted phishing or spoofing attacks that may be exploiting weaknesses in the email authentication setup.
Risk description
Without forensic reports (ruf), domain owners have limited visibility into the specifics of failed DMARC validation. This means potential malicious activity, such as email spoofing or phishing attempts, might go unnoticed until they result in more significant security breaches or reputational damage. Forensic reports allow for quick response to email abuses by providing detailed information about the failure, including the header information of the emails involved. The absence of this data hampers an organization's ability to identify and mitigate threats targeting its domain, increasing the risk of ongoing spoofing and fraud.
Recommendation
We recommend configuring the ruf tag in the DMARC record. This tag specifies where forensic reports should be sent, providing the domain owner with detailed data on DMARC validation failures. Forensic reports allow administrators to analyze why certain emails failed authentication, making it easier to fine-tune DMARC policies or address potential vulnerabilities. Ensure that the ruf email address belongs to a secure and trusted location capable of handling sensitive email data.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
coopava.com.co | A | IPv4 address | 50.62.137.56 |
coopava.com.co | NS | Name server | ns19.domaincontrol.com |
coopava.com.co | NS | Name server | ns20.domaincontrol.com |
coopava.com.co | MX | Mail server | 1 aspmx.l.google.com |
coopava.com.co | MX | Mail server | 5 alt1.aspmx.l.google.com |
coopava.com.co | MX | Mail server | 5 alt2.aspmx.l.google.com |
coopava.com.co | MX | Mail server | 10 alt3.aspmx.l.google.com |
coopava.com.co | MX | Mail server | 10 alt4.aspmx.l.google.com |
coopava.com.co | SOA | Start of Authority | ns19.domaincontrol.com. dns.jomax.net. 2024120202 28800 7200 604800 600 |
coopava.com.co | SPF | Sender Policy Framework | "v=spf1 include:spf.cloud.em.secureserver.net include:spf.em.secureserver.net include:_spf.google.com ~all" |
_dmarc.coopava.com.co | TXT | Text record | "v=DMARC1; p=none; rua=mailto:report@dmarc.cloud2.em.secureserver.net" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Operating System | Accuracy |
---|---|
Linux 3.2 - 4.9 | 93% |
Vulnerability description
OS Detection
Evidence
We managed to detect the redirect using the following Request / Response chain.
Recommendation
Vulnerability checks are skipped for ports that redirect to another port. We recommend scanning the redirected port directly.
Evidence
We managed to detect the redirect using the following Request / Response chain.
Recommendation
Vulnerability checks are skipped for ports that redirect to another port. We recommend scanning the redirected port directly.
Evidence
DKIM selector | Key type | Key size | Value |
---|---|---|---|
rsa | 1422 | "v=DKIM1; k=rsa; p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAnBc5PEoVX+wmP9Ooq5Ny5geCLXHrZ/qprOOjvHTxlvHBLruiR/zoVYvxNmL04UJmZY54pw/xPFxBKlGuT1QJuJqHyLWGLYpGxts5gG00LxSJBIdj/44vxgoZaZk4yqpxU6tEgffmUq01I6GDNe/u7Y1hrQLd9yy/N2FMBqZLSJD66lAa9i5zhCotk4NFhyXPC" "e646MhN0Wx/De/AsjVQjxkBOXX8V2bHQPOO6SyiZ8SjdzHKZQ7VMCOc4nCnumjgbj/Ou65Nw1H0L4Jjw+TCjvXdOfhvExIYL4p1LUrOH4KGpnLtC813XXIql7RlI84FowSsOddyJTlPbTrtyuYBowIDAQAB" |
Evidence
Software / Version | Category |
---|---|
cPanel | Hosting panels |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.