Vulnerability Scan Result

IP address | 87.248.151.114 |
Country | IR ![]() |
AS number | AS208161 |
Net name | Pars Shabakeh Azarakhsh LLC |
21/tcp | ftp | Microsoft ftpd - |
25/tcp | smtp | MailEnable smptd 10.51-- |
53/tcp | domain | Simple DNS Plus - |
80/tcp | http | Microsoft IIS httpd 10 |
110/tcp | pop3 | MailEnable POP3 Server - |
143/tcp | imap | MailEnable imapd - |
443/tcp | https | Microsoft IIS httpd 10 |
465/tcp | smtp | MailEnable smptd 10.51-- |
587/tcp | smtp | MailEnable smptd 10.51-- |
993/tcp | imap | MailEnable imapd - |
995/tcp | pop3 | MailEnable POP3 Server - |
1433/tcp | ms-sql-s | Microsoft SQL Server 2019 15.00.2070 |
3306/tcp | mysql | MySQL 5.5.5-10.6.18-MariaDB |
5985/tcp | http | Microsoft HTTPAPI httpd 2 |
8443/tcp | https | Microsoft IIS httpd 10 |
Software / Version | Category |
---|---|
jQuery 1.4.1 | JavaScript libraries |
Windows Server | Operating systems |
Microsoft ASP.NET 4.0.30319 | Web frameworks |
IIS 10.0 | Web servers |
Plesk | Hosting panels |
Web Application Vulnerabilities
Evidence
URL | Cookie Name | Evidence |
---|---|---|
http://keshtsanatj.com/fa-default.html | ASP.NET_SessionId | Set-Cookie: ASP.NET_SessionId=veweov12zd1gvmiawu53ctsv |
Vulnerability description
We found that a cookie has been set without the Secure
flag, which means the browser will send it over an unencrypted channel (plain HTTP) if such a request is made. The root cause for this usually revolves around misconfigurations in the code or server settings.
Risk description
The risk exists that an attacker will intercept the clear-text communication between the browser and the server and he will steal the cookie of the user. If this is a session cookie, the attacker could gain unauthorized access to the victim's web session.
Recommendation
Whenever a cookie contains sensitive information or is a session token, then it should always be passed using an encrypted channel. Ensure that the secure flag is set for cookies containing such sensitive information.
Classification
CWE | CWE-614 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
http://keshtsanatj.com/fa-default.html | Password input detected over insecure HTTP. Login form: ` |
Vulnerability description
We found that passwords are transmitted over a network without encryption. When users submit their passwords through an application or system, the lack of encryption means that the sensitive information is transmitted in plaintext, making it susceptible to interception and unauthorized access.
Risk description
The risk is that malicious actors could employ various techniques, such as packet sniffing or man-in-the-middle attacks, to capture plaintext passwords. Once intercepted, the attacker gains unauthorized access to user accounts, potentially leading to identity theft, unauthorized data access, or other malicious activities. The risk remains unchanged even if the password's form submission triggers a redirect response to an HTTPS page.
Recommendation
We recommend you to reconfigure the web server so it uses HTTPS - which encrypts the communication between the web browser and the server. This way, the attacker will not be able to obtain the clear-text passwords, even though he manages to intercept the network communication.
Classification
CWE | CWE-523 |
OWASP Top 10 - 2017 | A3 - Sensitive Data Exposure |
OWASP Top 10 - 2021 | A2 - Cryptographic Failures |
Evidence
URL | Response URL | Evidence |
---|---|---|
http://keshtsanatj.com/fa-default.html | http://keshtsanatj.com/fa-default.html | Communication is made over unsecure, unencrypted HTTP. |
Vulnerability description
We noticed that the communication between the web browser and the server is done using the HTTP protocol, which transmits data unencrypted over the network.
Risk description
The risk is that an attacker who manages to intercept the communication at the network level can read and modify the data transmitted (including passwords, secret tokens, credit card information and other sensitive data).
Recommendation
We recommend you to reconfigure the web server to use HTTPS - which encrypts the communication between the web browser and the server.
Classification
CWE | CWE-311 |
OWASP Top 10 - 2017 | A3 - Sensitive Data Exposure |
OWASP Top 10 - 2021 | A4 - Insecure Design |
Evidence
Risk Level | CVSS | CVE | Summary | Affected software |
---|---|---|---|---|
4.3 | CVE-2011-4969 | Cross-site scripting (XSS) vulnerability in jQuery before 1.6.3, when using location.hash to select elements, allows remote attackers to inject arbitrary web script or HTML via a crafted tag. | jquery 1.4.1 | |
4.3 | CVE-2012-6708 | jQuery before 1.9.0 is vulnerable to Cross-site Scripting (XSS) attacks. The jQuery(strInput) function does not differentiate selectors from HTML in a reliable fashion. In vulnerable versions, jQuery determined whether the input was HTML by looking for the '<' character anywhere in the string, giving attackers more flexibility when attempting to construct a malicious payload. In fixed versions, jQuery only deems the input to be HTML if it explicitly starts with the '<' character, limiting exploitability only to attackers who can control the beginning of a string, which is far less common. | jquery 1.4.1 | |
4.3 | CVE-2015-9251 | jQuery before 3.0.0 is vulnerable to Cross-site Scripting (XSS) attacks when a cross-domain Ajax request is performed without the dataType option, causing text/javascript responses to be executed. | jquery 1.4.1 | |
4.3 | CVE-2019-11358 | jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles jQuery.extend(true, {}, ...) because of Object.prototype pollution. If an unsanitized source object contained an enumerable __proto__ property, it could extend the native Object.prototype. | jquery 1.4.1 | |
4.3 | CVE-2020-11023 | In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. | jquery 1.4.1 |
Vulnerability description
We noticed known vulnerabilities in the target application based on the server responses. They are usually related to outdated systems and expose the affected applications to the risk of unauthorized access to confidential data and possibly denial of service attacks. Depending on the system distribution the affected software can be patched but displays the same version, requiring manual checking.
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1026 |
OWASP Top 10 - 2017 | A9 - Using Components with Known Vulnerabilities |
OWASP Top 10 - 2021 | A6 - Vulnerable and Outdated Components |
Evidence
URL | Evidence |
---|---|
http://keshtsanatj.com/fa-default.html | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
http://keshtsanatj.com/fa-default.html | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the X-Content-Type-Options
header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
http://keshtsanatj.com/fa-default.html | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy
HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Software / Version | Category |
---|---|
jQuery 1.4.1 | JavaScript libraries |
Windows Server | Operating systems |
Microsoft ASP.NET 4.0.30319 | Web frameworks |
IIS 10.0 | Web servers |
Plesk | Hosting panels |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
Website is accessible.
Evidence
URL | Evidence |
---|---|
http://keshtsanatj.com/fa-default.html |
|
Vulnerability description
We have discovered that the target application presents a login interface that could be a potential target for attacks. While login interfaces are standard for user authentication, they can become vulnerabilities if not properly secured.
Risk description
The risk is that an attacker could use this interface to mount brute force attacks against known passwords and usernames combinations leaked throughout the web.
Recommendation
Ensure each interface is not bypassable using common knowledge of the application or leaked credentials using occasional password audits.
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Method | Summary |
---|---|---|
http://keshtsanatj.com/fa-default.html | OPTIONS | We did a HTTP OPTIONS request. The server responded with a 200 status code and the header: `Allow: OPTIONS, TRACE, GET, HEAD, POST` Request / Response |
Vulnerability description
We have noticed that the webserver responded with an Allow HTTP header when an OPTIONS HTTP request was sent. This method responds to requests by providing information about the methods available for the target resource.
Risk description
The only risk this might present nowadays is revealing debug HTTP methods that can be used on the server. This can present a danger if any of those methods can lead to sensitive information, like authentication information, secret keys.
Recommendation
We recommend that you check for unused HTTP methods or even better, disable the OPTIONS method. This can be done using your webserver configuration.
Classification
CWE | CWE-16 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Infrastructure Vulnerabilities
Evidence
We managed to detect a publicly accessible Windows Microsoft SQL Server (MSSQL) service.
PORT STATE SERVICE VERSION
1433/tcp open ms-sql-s Microsoft SQL Server 2019 15.00.2070
Vulnerability description
We found that the Microsoft SQL Server (MSSQL) is publicly accessible. This service often holds critical organizational data, making it a potential prime target for determined attackers.
Risk description
The risk exists that an attacker exploits this issue by launching a password-based attack on the MSSQL service. If an attacker identifies a correct set of login details, they could gain access to the database and start enumerating, potentially revealing confidential information. Moreover, such vulnerabilities could lead to other forms of attacks, including privilege escalation, allowing attackers to run system commands and move laterally to other systems in the internal network.
Recommendation
We recommend ensuring that the Microsoft SQL Server (MSSQL) service is not publicly accessible. The MSSQL service should be safeguarded behind a firewall or made available only to users connected through a Virtual Private Network (VPN) server. However, if the MSSQL service is required to be directly accessible over the Internet, we recommend reconfiguring it such that it is accessible only from known IP addresses.
Evidence
We managed to detect a publicly accessible MySQL service.
PORT STATE SERVICE VERSION
3306/tcp open mysql MySQL 5.5.5-10.6.18-MariaDB
Vulnerability description
We identified that the MySQL service is publicly accessible. MySQL serves as a common database for numerous web applications and services for data storage, making it a potential prime target for determined attackers.
Risk description
The risk exists that an attacker exploits this issue by launching a password-based attack on the MySQL service. Furthermore, they could exploit zero-day vulnerabilities to obtain remote access to the MySQL database server, thereby gaining complete control over its operating system and associated services. Such an attack could lead to the exposure of confidential or sensitive information.
Recommendation
We recommend turning off public Internet access to MySQL and opting for a Virtual Private Network (VPN) that enforces two-factor authentication (2FA). Avoid enabling direct user authentication to the MySQL service via the Internet, as this could enable attackers to engage in password-guessing and potentially initiate attacks leading to complete control. However, if the MySQL service is required to be directly accessible over the Internet, we recommend reconfiguring it to be accessible only from known IP addresses.
Evidence
We managed to detect a publicly accessible Windows Remote Management (WinRM) service.
PORT STATE SERVICE VERSION
5985/tcp open http Microsoft HTTPAPI httpd 2.0
Vulnerability description
We found that the Windows Remote Management (WinRM) service is publicly accessible. Network administrators often use remote administration protocols to control devices like servers and other essential systems. However, allowing these services to be accessible from the Internet can increase security risks, creating potential opportunities for attacks on the organization. Also, it operates in cleartext, making all traffic communicated through this protocol vulnerable to interception in its unencrypted form.
Risk description
Exposing this service online can enable attackers to launch authentication attacks, like guessing login credentials, and potentially gaining unauthorized access. Also, any vulnerabilities in the WinRM service or the underlying Windows OS can be exploited by attackers to gain access or elevate privileges. Given the high privilege level of WinRM, exploiting such vulnerabilities can lead to full system compromise This could also lead to the exposure of sensitive data such as user credentials and other sensitive information depending on the device being managed remotely since it uses a cleartext transfer of data. If an attacker intercepts these credentials, they might gain unauthorized access to the device.
Recommendation
We recommend turning off WinRM access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the WinRM service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing HTTPS with WinRM (port 5986) is recommended as this protocol employs encryption.
Evidence
Risk level | CVSS | CVE | Summary |
---|---|---|---|
4.3 | CVE-2011-4969 | Cross-site scripting (XSS) vulnerability in jQuery before 1.6.3, when using location.hash to select elements, allows remote attackers to inject arbitrary web script or HTML via a crafted tag. | |
4.3 | CVE-2012-6708 | jQuery before 1.9.0 is vulnerable to Cross-site Scripting (XSS) attacks. The jQuery(strInput) function does not differentiate selectors from HTML in a reliable fashion. In vulnerable versions, jQuery determined whether the input was HTML by looking for the '<' character anywhere in the string, giving attackers more flexibility when attempting to construct a malicious payload. In fixed versions, jQuery only deems the input to be HTML if it explicitly starts with the '<' character, limiting exploitability only to attackers who can control the beginning of a string, which is far less common. | |
4.3 | CVE-2015-9251 | jQuery before 3.0.0 is vulnerable to Cross-site Scripting (XSS) attacks when a cross-domain Ajax request is performed without the dataType option, causing text/javascript responses to be executed. | |
4.3 | CVE-2019-11358 | jQuery before 3.4.0, as used in Drupal, Backdrop CMS, and other products, mishandles jQuery.extend(true, {}, ...) because of Object.prototype pollution. If an unsanitized source object contained an enumerable __proto__ property, it could extend the native Object.prototype. | |
4.3 | CVE-2020-11023 | In jQuery versions greater than or equal to 1.0.3 and before 3.5.0, passing HTML containing <option> elements from untrusted sources - even after sanitizing it - to one of jQuery's DOM manipulation methods (i.e. .html(), .append(), and others) may execute untrusted code. This problem is patched in jQuery 3.5.0. |
Vulnerability description
Vulnerabilities found for jQuery 1.4.1
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible File Transfer Protocol (FTP) service.
PORT STATE SERVICE VERSION
21/tcp open ftp Microsoft ftpd
Vulnerability description
We found that the File Transfer Protocol (FTP) service is publicly accessible. The FTP enables client systems to connect to upload and download files. Nonetheless, FTP lacks encryption for the data exchanged between the server and the client, leaving all transferred data exposed in plaintext.
Risk description
Exposing this service online can enable attackers to execute man-in-the-middle attacks, capturing sensitive user credentials and the contents of files because FTP operates without encryption. The entirety of the communication between the client and the server remains unsecured in plaintext. This acquired information could further facilitate additional attacks within the network.
Recommendation
We recommend turning off FTP access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the FTP service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing SFTP (Secure File Transfer Protocol) is recommended as this protocol employs encryption to secure data transfers.
Evidence
We managed to detect a publicly accessible Post Office Protocol (POP3) service.
Starting Nmap ( https://nmap.org ) at 2025-05-21 23:41 EEST
Nmap scan report for keshtsanatj.com (87.248.151.114)
Host is up (0.075s latency).
rDNS record for 87.248.151.114: ip-87-248-151-114.hosted-by.parsvds.com
PORT STATE SERVICE VERSION
110/tcp open pop3 MailEnable POP3 Server
|_pop3-capabilities: UIDL USER TOP
Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 1.49 seconds
Vulnerability description
We found that the Post Office Protocol (POP3) service is publicly accessible and doesn’t include STARTTLS capability. Email clients use the Post Office Protocol (POP) to download emails for user accounts. Some POP servers are initially set up to operate over an unsecured protocol. When email clients download email content through this plaintext protocol, it can pose a substantial risk to the organization's network, especially depending on which user account is set to receive the emails.
Risk description
Exposing this service online can enable attackers to conduct man-in-the-middle attacks, thereby gaining access to sensitive user credentials and the contents of emails. Given that POP3 operates via a plaintext protocol, the entirety of the data exchanged between the client and server is left unencrypted. This critical information could then be leveraged in further attacks on the organization's network.
Recommendation
We recommend turning off POP3 access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the POP3 service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, activating STARTTLS capability (switching the connection to a secure communication) or utilizing Secure POP3 (POP3S) is recommended, as this protocol employs encryption.
Evidence
We managed to detect a publicly accessible Post Office Protocol (POP3) service.
Starting Nmap ( https://nmap.org ) at 2025-05-21 23:41 EEST
Nmap scan report for keshtsanatj.com (87.248.151.114)
Host is up (0.071s latency).
rDNS record for 87.248.151.114: ip-87-248-151-114.hosted-by.parsvds.com
PORT STATE SERVICE VERSION
995/tcp open ssl/pop3 MailEnable POP3 Server
|_pop3-capabilities: USER UIDL TOP
Service Info: OS: Windows; CPE: cpe:/o:microsoft:windows
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 8.07 seconds
Vulnerability description
We found that the Post Office Protocol (POP3) service is publicly accessible and doesn’t include STARTTLS capability. Email clients use the Post Office Protocol (POP) to download emails for user accounts. Some POP servers are initially set up to operate over an unsecured protocol. When email clients download email content through this plaintext protocol, it can pose a substantial risk to the organization's network, especially depending on which user account is set to receive the emails.
Risk description
Exposing this service online can enable attackers to conduct man-in-the-middle attacks, thereby gaining access to sensitive user credentials and the contents of emails. Given that POP3 operates via a plaintext protocol, the entirety of the data exchanged between the client and server is left unencrypted. This critical information could then be leveraged in further attacks on the organization's network.
Recommendation
We recommend turning off POP3 access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the POP3 service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, activating STARTTLS capability (switching the connection to a secure communication) or utilizing Secure POP3 (POP3S) is recommended, as this protocol employs encryption.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
keshtsanatj.com | SPF | Sender Policy Framework | "v=spf1 ip4:87.248.151.114 a mx include:_spf.google.com include:spf.protection.outlook.com ~all" |
Vulnerability description
We found that the Sender Policy Framework (SPF) record for the domain is configured with ~all (soft fail), which indicates that emails from unauthorized IP addresses are not explicitly denied. Instead, the recipient mail server is instructed to treat these messages with suspicion but may still accept them. This configuration may not provide enough protection against email spoofing and unauthorized email delivery, leaving the domain more vulnerable to impersonation attempts.
Risk description
The ~all directive in an SPF record allows unauthorized emails to pass through some email servers, even though they fail SPF verification. While such emails may be marked as suspicious or placed into a spam folder, not all mail servers handle soft fail conditions consistently. This creates a risk that malicious actors can spoof the domain to send phishing emails or other fraudulent communications, potentially causing damage to the organization's reputation and leading to successful social engineering attacks.
Recommendation
We recommend changing the SPF record's ~all (soft fail) directive to -all (hard fail). The -all setting tells recipient mail servers to reject emails from any IP addresses not listed in the SPF record, providing stronger protection against email spoofing. Ensure that all legitimate IP addresses and services that send emails on behalf of your domain are properly included in the SPF record before implementing this change.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.keshtsanatj.com | TXT | Text record | "v=DMARC1; p=quarantine; adkim=s; aspf=s" |
Vulnerability description
We found that the target uses p=quarantine in the DMARC policy. When a DMARC policy is set to p=quarantine, emails that fail DMARC validation are delivered but placed in the recipient’s spam or junk folder. Although it offers some protection, this policy is less strict than p=reject, which blocks such emails entirely.
Risk description
While emails failing DMARC validation are sent to the spam folder, users may still retrieve them from there, leading to a higher risk of phishing and spoofing attacks succeeding. Moreover, less strict enforcement may allow more fraudulent emails to reach user inboxes if misclassified.
Recommendation
We recommend considering moving to a stricter policy, such as p=reject, where emails that fail DMARC validation are completely rejected rather than delivered to spam folders. This reduces the risk of users interacting with potentially malicious emails.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.keshtsanatj.com | TXT | Text record | "v=DMARC1; p=quarantine; adkim=s; aspf=s" |
Vulnerability description
We found that the DMARC record for the domain is not configured with sp policy, meaning that no policy is enforced for subdomains. When a DMARC record does not include a subdomain policy (sp directive), subdomains are not explicitly covered by the main domain's DMARC policy. This means that emails sent from subdomains (e.g., sub.example.com) may not be subject to the same DMARC enforcement as the main domain (example.com). As a result, attackers could potentially spoof emails from subdomains without being blocked or flagged, even if the main domain has a strict DMARC policy.
Risk description
Without a subdomain policy (sp directive) in the DMARC record, subdomains are not protected by the same DMARC enforcement as the main domain, leaving them vulnerable to spoofing attacks. This inconsistency can be exploited by attackers to send phishing emails from subdomains, undermining the organization’s overall email security.
Recommendation
To mitigate the risk, we recommend configuring the DMARC record with a subdomain policy by adding the sp=reject or sp=quarantine directive. This will extend DMARC enforcement to all subdomains, preventing spoofing attempts and maintaining consistent security across both the main domain and its subdomains.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.keshtsanatj.com | TXT | Text record | "v=DMARC1; p=quarantine; adkim=s; aspf=s" |
Vulnerability description
We found that the DMARC record for the domain is not configured with rua tag. When a DMARC record is not configured with the rua (Reporting URI for Aggregate Reports) tag, the domain owner misses out on critical feedback regarding the domain's email authentication performance. Aggregate reports are essential for monitoring how a domain's DMARC policy is applied across various mail servers and whether legitimate or malicious emails are being sent on behalf of the domain. Without this reporting, domain administrators have no visibility into how their DMARC policy is being enforced, which hinders their ability to detect potential spoofing or authentication issues.
Risk description
The absence of rua reporting creates a significant blind spot in the domain's email security posture. Without aggregate reports, domain administrators cannot track DMARC compliance across email sent from their domain, leaving them unaware of potential misconfigurations or unauthorized use of their domain for malicious purposes, such as phishing or spoofing. This lack of visibility increases the risk of undetected spoofing attempts, which could damage the domain's reputation and lead to financial, operational, or reputational harm. Moreover, legitimate email issues, such as misaligned SPF or DKIM configurations, may also go unnoticed, affecting email deliverability.
Recommendation
We recommend configuring the rua tag in the DMARC record to receive aggregate reports from mail servers. This tag should point to a reliable email address or monitoring service capable of handling DMARC aggregate reports, such as rua=mailto:dmarc-reports@example.com. These reports provide valuable insights into how email from the domain is being treated by receiving mail servers, highlighting potential authentication issues and attempts to spoof the domain. Regularly reviewing these reports will help ensure the DMARC policy is properly enforced and that any email authentication failures are addressed in a timely manner.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.keshtsanatj.com | TXT | Text record | "v=DMARC1; p=quarantine; adkim=s; aspf=s" |
Vulnerability description
We found that the DMARC record for the domain is not configured with ruf tag. A missing ruf (forensic reporting) tag in a DMARC record indicates that the domain owner has not enabled the collection of detailed failure reports. Forensic reports provide valuable insights into specific instances where emails fail DMARC authentication. Without the ruf tag, the domain administrator loses the ability to receive and analyze these reports, making it difficult to investigate individual email failures or identify targeted phishing or spoofing attacks that may be exploiting weaknesses in the email authentication setup.
Risk description
Without forensic reports (ruf), domain owners have limited visibility into the specifics of failed DMARC validation. This means potential malicious activity, such as email spoofing or phishing attempts, might go unnoticed until they result in more significant security breaches or reputational damage. Forensic reports allow for quick response to email abuses by providing detailed information about the failure, including the header information of the emails involved. The absence of this data hampers an organization's ability to identify and mitigate threats targeting its domain, increasing the risk of ongoing spoofing and fraud.
Recommendation
We recommend configuring the ruf tag in the DMARC record. This tag specifies where forensic reports should be sent, providing the domain owner with detailed data on DMARC validation failures. Forensic reports allow administrators to analyze why certain emails failed authentication, making it easier to fine-tune DMARC policies or address potential vulnerabilities. Ensure that the ruf email address belongs to a secure and trusted location capable of handling sensitive email data.
Evidence
We checked 2056 selectors but found no DKIM records.
Vulnerability description
We found that no DKIM record was configured. When a DKIM (DomainKeys Identified Mail) record is not present for a domain, it means that outgoing emails from that domain are not cryptographically signed. DKIM is a critical component of email authentication, allowing recipients to verify that an email was genuinely sent from an authorized server and that the message has not been altered in transit. The absence of a DKIM record leaves the domain vulnerable to email spoofing and phishing attacks, as attackers can send fraudulent emails that appear to originate from the domain without any cryptographic verification.
Risk description
Without a DKIM record, recipients have no way of verifying the integrity or authenticity of emails sent from the domain. This increases the likelihood of phishing and spoofing attacks, where malicious actors impersonate the domain to send fraudulent emails. This can lead to significant security incidents, such as credential theft, financial fraud, or the distribution of malware. Additionally, many email providers use DKIM as part of their spam and reputation filters, meaning that emails from a domain without DKIM may be flagged as spam or rejected, impacting the deliverability and reputation of legitimate emails.
Recommendation
We recommend implementing DKIM for your domain to enhance email security and protect your brand from email-based attacks. Generate a DKIM key pair (public and private keys), publish the public key in the DNS under the appropriate selector, and configure your email servers to sign outgoing messages using the private key. Ensure that the DKIM key length is at least 1024 bits to prevent cryptographic attacks. Regularly monitor DKIM signatures to ensure the system is functioning correctly and update keys periodically to maintain security.
Evidence
We managed to detect that MySQL has reached the End-of-Life (EOL).
Version detected: 5.5.5-10.6.18-mariadb End-of-life date: 2018-12-31 Latest version for the cycle: 5.5.63 This release cycle (5.5) doesn't have long-term-support (LTS). The cycle was released on 2010-12-03 and its latest release date was 2018-12-21. The support ended on 2015-12-31.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
We managed to detect that jQuery has reached the End-of-Life (EOL).
Version detected: 1.4.1 Latest version for the cycle: 1.12.4 This release cycle (1) doesn't have long-term-support (LTS). The cycle was released on 2006-08-31 and its latest release date was 2016-05-20.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
keshtsanatj.com | A | IPv4 address | 87.248.151.114 |
keshtsanatj.com | NS | Name server | ns2.parsianmehr.ir |
keshtsanatj.com | NS | Name server | ns1.parsianmehr.ir |
keshtsanatj.com | MX | Mail server | 10 mail.keshtsanatj.com |
keshtsanatj.com | SOA | Start of Authority | ns1.parsianmehr.ir. farhangfrafat.yahoo.com. 2024020402 10800 3600 1209600 10800 |
keshtsanatj.com | SPF | Sender Policy Framework | "v=spf1 ip4:87.248.151.114 a mx include:_spf.google.com include:spf.protection.outlook.com ~all" |
_dmarc.keshtsanatj.com | TXT | Text record | "v=DMARC1; p=quarantine; adkim=s; aspf=s" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Operating System | Accuracy |
---|---|
Microsoft Windows Server 2012 R2 | 91% |
Vulnerability description
OS Detection
Evidence
Software / Version | Category |
---|---|
Plesk | Hosting panels |
Windows Server | Operating systems |
Microsoft ASP.NET 4.0.30319 | Web frameworks |
IIS 10.0 | Web servers |
jQuery 1.4.1 | JavaScript libraries |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
Plesk | Hosting panels |
Windows Server | Operating systems |
Microsoft ASP.NET | Web frameworks |
RequireJS | JavaScript frameworks |
Prototype | JavaScript frameworks |
IIS 10.0 | Web servers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
Microsoft HTTPAPI 2.0 | Web servers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Evidence
Software / Version | Category |
---|---|
Plesk | Hosting panels |
Windows Server | Operating systems |
Microsoft ASP.NET | Web frameworks |
RequireJS | JavaScript frameworks |
Prototype | JavaScript frameworks |
IIS 10.0 | Web servers |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.