Vulnerability Scan Result

IP address | 217.26.53.246 |
Country | CH ![]() |
AS number | AS29097 |
Net name | Ripe NCC ASN Block |
21/tcp | ftp | Pure-FTPd - |
22/tcp | ssh | OpenSSH 9.7 |
80/tcp | http | Apache httpd - |
443/tcp | https | Apache httpd - |
Software / Version | Category |
---|---|
Google Analytics GA4 | Analytics |
Google Font API | Font scripts |
Apache HTTP Server | Web servers |
jQuery | JavaScript libraries |
Modernizr | JavaScript libraries |
MySQL | Databases |
PHP | Programming languages |
WordPress 6.8.1 | CMS, Blogs |
wpBakery | Page builders, WordPress plugins |
WPML 4.7.4 | WordPress plugins, Translation |
Google Tag Manager | Tag managers |
Moove GDPR Consent | Cookie compliance, WordPress plugins |
HSTS | Security |
Yoast SEO 25.0 | SEO, WordPress plugins |
Web Application Vulnerabilities
Evidence
URL | Evidence |
---|---|
https://reticles.ch/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Software / Version | Category |
---|---|
Google Analytics GA4 | Analytics |
Google Font API | Font scripts |
Apache HTTP Server | Web servers |
jQuery | JavaScript libraries |
Modernizr | JavaScript libraries |
MySQL | Databases |
PHP | Programming languages |
WordPress 6.8.1 | CMS, Blogs |
wpBakery | Page builders, WordPress plugins |
WPML 4.7.4 | WordPress plugins, Translation |
Google Tag Manager | Tag managers |
Moove GDPR Consent | Cookie compliance, WordPress plugins |
HSTS | Security |
Yoast SEO 25.0 | SEO, WordPress plugins |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
Website is accessible.
Evidence
URL | Method | Parameters | Evidence |
---|---|---|---|
https://reticles.ch/wp | GET | Headers: User-Agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36 | Email Address: info@imtag.ch |
Vulnerability description
We noticed that this web application exposes email addresses, which might be unintended. While not inherently a vulnerability, this information could be leveraged in social engineering or spam related activities.
Risk description
The risk is that exposed email addresses within the application could be accessed by unauthorized parties. This could lead to privacy violations, spam, phishing attacks, or other forms of misuse.
Recommendation
Compartmentalize the application to have 'safe' areas where trust boundaries can be unambiguously drawn. Do not allow email addresses to go outside of the trust boundary, and always be careful when interfacing with a compartment outside of the safe area.
Classification
CWE | CWE-200 |
OWASP Top 10 - 2017 | A6: Security Misconfiguration |
OWASP Top 10 - 2021 | A4: Insecure Design |
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Infrastructure Vulnerabilities
Evidence
Risk level | CVSS | CVE | Summary |
---|---|---|---|
8.1 | CVE-2024-6387 | A security regression (CVE-2006-5051) was discovered in OpenSSH's server (sshd). There is a race condition which can lead sshd to handle some signals in an unsafe manner. An unauthenticated, remote attacker may be able to trigger it by failing to authenticate within a set time period. | |
6.8 | CVE-2025-26465 | A vulnerability was found in OpenSSH when the VerifyHostKeyDNS option is enabled. A machine-in-the-middle attack can be performed by a malicious machine impersonating a legit server. This issue occurs due to how OpenSSH mishandles error codes in specific conditions when verifying the host key. For an attack to be considered successful, the attacker needs to manage to exhaust the client's memory resource first, turning the attack complexity high. | |
5.9 | CVE-2025-26466 | A flaw was found in the OpenSSH package. For each ping packet the SSH server receives, a pong packet is allocated in a memory buffer and stored in a queue of packages. It is only freed when the server/client key exchange has finished. A malicious client may keep sending such packages, leading to an uncontrolled increase in memory consumption on the server side. Consequently, the server may become unavailable, resulting in a denial of service attack. | |
4.3 | CVE-2025-32728 | In sshd in OpenSSH before 10.0, the DisableForwarding directive does not adhere to the documentation stating that it disables X11 and agent forwarding. |
Vulnerability description
Vulnerabilities found for Openssh 9.7
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.; Since the vulnerabilities were discovered using only version-based testing, the risk level for this finding will not exceed "high" severity. Critical risks will be assigned to vulnerabilities identified through accurate active testing methods.
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible File Transfer Protocol (FTP) service.
PORT STATE SERVICE VERSION
21/tcp open ftp Pure-FTPd
Vulnerability description
We found that the File Transfer Protocol (FTP) service is publicly accessible. The FTP enables client systems to connect to upload and download files. Nonetheless, FTP lacks encryption for the data exchanged between the server and the client, leaving all transferred data exposed in plaintext.
Risk description
Exposing this service online can enable attackers to execute man-in-the-middle attacks, capturing sensitive user credentials and the contents of files because FTP operates without encryption. The entirety of the communication between the client and the server remains unsecured in plaintext. This acquired information could further facilitate additional attacks within the network.
Recommendation
We recommend turning off FTP access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the FTP service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing SFTP (Secure File Transfer Protocol) is recommended as this protocol employs encryption to secure data transfers.
Evidence
We didn't find any TXT records associated with the target.
Vulnerability description
We found that the target server has no DMARC policy configured. A missing DMARC (Domain-based Message Authentication, Reporting, and Conformance) policy means that the domain is not enforcing any DMARC policies to protect against email spoofing and phishing attacks. Without DMARC, even if SPF (Sender Policy Framework) or DKIM (DomainKeys Identified Mail) are configured, there is no mechanism to tell receiving email servers how to handle messages that fail authentication. This leaves the domain vulnerable to abuse, such as email spoofing and impersonation.
Risk description
Without a DMARC policy, your domain is highly vulnerable to email spoofing, allowing attackers to impersonate your brand and send fraudulent emails that appear legitimate. This can lead to phishing attacks targeting your customers, employees, or partners, potentially resulting in stolen credentials, financial loss, or unauthorized access to sensitive systems. Additionally, repeated spoofing attempts can severely damage your brand's reputation, as recipients may lose trust in communications from your domain, associating your brand with malicious activity. The absence of DMARC also prevents you from monitoring and mitigating email-based attacks, leaving your domain exposed to ongoing abuse.
Recommendation
We recommend implementing a DMARC policy for your domain. Start by configuring a DMARC record with a policy of p=none, which will allow you to monitor email flows without impacting legitimate emails. This initial setup helps identify how emails from your domain are being processed by recipient servers. Once you’ve verified that legitimate emails are passing SPF and DKIM checks, you can gradually enforce stricter policies like p=quarantine or p=reject to protect against spoofing and phishing attacks. Additionally, include rua and ruf email addresses in the DMARC record to receive aggregate and forensic reports. These reports will provide valuable insights into authentication failures and help you detect any spoofing attempts.
Evidence
We checked 2056 selectors but found no DKIM records.
Vulnerability description
We found that no DKIM record was configured. When a DKIM (DomainKeys Identified Mail) record is not present for a domain, it means that outgoing emails from that domain are not cryptographically signed. DKIM is a critical component of email authentication, allowing recipients to verify that an email was genuinely sent from an authorized server and that the message has not been altered in transit. The absence of a DKIM record leaves the domain vulnerable to email spoofing and phishing attacks, as attackers can send fraudulent emails that appear to originate from the domain without any cryptographic verification.
Risk description
Without a DKIM record, recipients have no way of verifying the integrity or authenticity of emails sent from the domain. This increases the likelihood of phishing and spoofing attacks, where malicious actors impersonate the domain to send fraudulent emails. This can lead to significant security incidents, such as credential theft, financial fraud, or the distribution of malware. Additionally, many email providers use DKIM as part of their spam and reputation filters, meaning that emails from a domain without DKIM may be flagged as spam or rejected, impacting the deliverability and reputation of legitimate emails.
Recommendation
We recommend implementing DKIM for your domain to enhance email security and protect your brand from email-based attacks. Generate a DKIM key pair (public and private keys), publish the public key in the DNS under the appropriate selector, and configure your email servers to sign outgoing messages using the private key. Ensure that the DKIM key length is at least 1024 bits to prevent cryptographic attacks. Regularly monitor DKIM signatures to ensure the system is functioning correctly and update keys periodically to maintain security.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
reticles.ch | A | IPv4 address | 217.26.53.246 |
reticles.ch | NS | Name server | ns.hostpoint.ch |
reticles.ch | NS | Name server | ns2.hostpoint.ch |
reticles.ch | NS | Name server | ns3.hostpoint.ch |
reticles.ch | MX | Mail server | 10 mx1.mail.hostpoint.ch |
reticles.ch | MX | Mail server | 10 mx2.mail.hostpoint.ch |
reticles.ch | SOA | Start of Authority | ns.hostpoint.ch. hostmaster.hostpoint.ch. 1747872000 14400 1800 604800 3600 |
reticles.ch | SPF | Sender Policy Framework | "v=spf1 redirect=spf-permissive.mail.hostpoint.ch" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Operating System | Accuracy |
---|---|
FreeBSD 12.1-RELEASE | 94% |
Vulnerability description
OS Detection
Evidence
We managed to detect the redirect using the following Request / Response chain.
Recommendation
Vulnerability checks are skipped for ports that redirect to another port. We recommend scanning the redirected port directly.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
reticles.ch | SPF | Sender Policy Framework | "v=spf1 redirect=spf-permissive.mail.hostpoint.ch" |
Evidence
Software / Version | Category |
---|---|
WordPress | CMS, Blogs |
MySQL | Databases |
PHP | Programming languages |
Apache HTTP Server | Web servers |
HSTS | Security |
wpBakery | Page builders, WordPress plugins |
Yoast SEO 25.0 | SEO, WordPress plugins |
WPML 4.7.4 | WordPress plugins, Translation |
Modernizr | JavaScript libraries |
jQuery | JavaScript libraries |
Google Tag Manager | Tag managers |
Google Analytics GA4 | Analytics |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.