Vulnerability Scan Result

IP address | 193.200.74.253 |
Country | RU ![]() |
AS number | AS198610 |
Net name | Beget LLC |
22/tcp | ssh | OpenSSH 8.9p1 Ubuntu 3ubuntu0.11 |
80/tcp | http | nginx 1.18.0 |
443/tcp | https | nginx 1.18.0 |
3306/tcp | mysql | MySQL 8.0.41-0ubuntu0.22.04.1 |
Software / Version | Category |
---|---|
jQuery 3.7.1 | JavaScript libraries |
Nginx 1.18.0 | Web servers, Reverse proxies |
Swiper | JavaScript libraries |
PWA | Miscellaneous |
Ubuntu | Operating systems |
Web Application Vulnerabilities
Evidence
Risk Level | CVSS | CVE | Summary | Affected software |
---|---|---|---|---|
7.8 | CVE-2022-41741 | NGINX Open Source before versions 1.23.2 and 1.22.1, NGINX Open Source Subscription before versions R2 P1 and R1 P1, and NGINX Plus before versions R27 P1 and R26 P1 have a vulnerability in the module ngx_http_mp4_module that might allow a local attacker to corrupt NGINX worker memory, resulting in its termination or potential other impact using a specially crafted audio or video file. The issue affects only NGINX products that are built with the ngx_http_mp4_module, when the mp4 directive is used in the configuration file. Further, the attack is possible only if an attacker can trigger processing of a specially crafted audio or video file with the module ngx_http_mp4_module. | nginx 1.18.0 | |
7.5 | CVE-2023-44487 | The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | nginx 1.18.0 | |
7.1 | CVE-2022-41742 | NGINX Open Source before versions 1.23.2 and 1.22.1, NGINX Open Source Subscription before versions R2 P1 and R1 P1, and NGINX Plus before versions R27 P1 and R26 P1 have a vulnerability in the module ngx_http_mp4_module that might allow a local attacker to cause a worker process crash, or might result in worker process memory disclosure by using a specially crafted audio or video file. The issue affects only NGINX products that are built with the module ngx_http_mp4_module, when the mp4 directive is used in the configuration file. Further, the attack is possible only if an attacker can trigger processing of a specially crafted audio or video file with the module ngx_http_mp4_module. | nginx 1.18.0 | |
6.8 | CVE-2021-23017 | A security issue in nginx resolver was identified, which might allow an attacker who is able to forge UDP packets from the DNS server to cause 1-byte memory overwrite, resulting in worker process crash or potential other impact. | nginx 1.18.0 | |
5.8 | CVE-2021-3618 | ALPACA is an application layer protocol content confusion attack, exploiting TLS servers implementing different protocols but using compatible certificates, such as multi-domain or wildcard certificates. A MiTM attacker having access to victim's traffic at the TCP/IP layer can redirect traffic from one subdomain to another, resulting in a valid TLS session. This breaks the authentication of TLS and cross-protocol attacks may be possible where the behavior of one protocol service may compromise the other at the application layer. | nginx 1.18.0 |
Vulnerability description
We noticed known vulnerabilities in the target application based on the server responses. They are usually related to outdated systems and expose the affected applications to the risk of unauthorized access to confidential data and possibly denial of service attacks. Depending on the system distribution the affected software can be patched but displays the same version, requiring manual checking.
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1026 |
OWASP Top 10 - 2017 | A9 - Using Components with Known Vulnerabilities |
OWASP Top 10 - 2021 | A6 - Vulnerable and Outdated Components |
Evidence
URL | Evidence |
---|---|
https://tolkoti.ru/ | Response headers do not include the HTTP Strict-Transport-Security header |
Vulnerability description
We noticed that the target application lacks the HTTP Strict-Transport-Security header in its responses. This security header is crucial as it instructs browsers to only establish secure (HTTPS) connections with the web server and reject any HTTP connections.
Risk description
The risk is that lack of this header permits an attacker to force a victim user to initiate a clear-text HTTP connection to the server, thus opening the possibility to eavesdrop on the network traffic and extract sensitive information (e.g. session cookies).
Recommendation
The Strict-Transport-Security HTTP header should be sent with each HTTPS response. The syntax is as follows: `Strict-Transport-Security: max-age=<seconds>[; includeSubDomains]` The parameter `max-age` gives the time frame for requirement of HTTPS in seconds and should be chosen quite high, e.g. several months. A value below 7776000 is considered as too low by this scanner check. The flag `includeSubDomains` defines that the policy applies also for sub domains of the sender of the response.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://tolkoti.ru/ | Response headers do not include the Referrer-Policy HTTP security header as well as the |
Vulnerability description
We noticed that the target application's server responses lack the Referrer-Policy
HTTP header, which controls how much referrer information the browser will send with each request originated from the current web application.
Risk description
The risk is that if a user visits a web page (e.g. "http://example.com/pricing/") and clicks on a link from that page going to e.g. "https://www.google.com", the browser will send to Google the full originating URL in the `Referer` header, assuming the Referrer-Policy header is not set. The originating URL could be considered sensitive information and it could be used for user tracking.
Recommendation
The Referrer-Policy header should be configured on the server side to avoid user tracking and inadvertent information leakage. The value `no-referrer` of this header instructs the browser to omit the Referer header entirely.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://tolkoti.ru/ | Response headers do not include the X-Content-Type-Options HTTP security header |
Vulnerability description
We noticed that the target application's server responses lack the X-Content-Type-Options
header. This header is particularly important for preventing Internet Explorer from reinterpreting the content of a web page (MIME-sniffing) and thus overriding the value of the Content-Type header.
Risk description
The risk is that lack of this header could make possible attacks such as Cross-Site Scripting or phishing in Internet Explorer browsers.
Recommendation
We recommend setting the X-Content-Type-Options header such as `X-Content-Type-Options: nosniff`.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Evidence |
---|---|
https://tolkoti.ru/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Software / Version | Category |
---|---|
jQuery 3.7.1 | JavaScript libraries |
Nginx 1.18.0 | Web servers, Reverse proxies |
Swiper | JavaScript libraries |
PWA | Miscellaneous |
Ubuntu | Operating systems |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
Website is accessible.
Infrastructure Vulnerabilities
Evidence
Risk level | CVSS | CVE | Summary |
---|---|---|---|
7.8 | CVE-2022-41741 | NGINX Open Source before versions 1.23.2 and 1.22.1, NGINX Open Source Subscription before versions R2 P1 and R1 P1, and NGINX Plus before versions R27 P1 and R26 P1 have a vulnerability in the module ngx_http_mp4_module that might allow a local attacker to corrupt NGINX worker memory, resulting in its termination or potential other impact using a specially crafted audio or video file. The issue affects only NGINX products that are built with the ngx_http_mp4_module, when the mp4 directive is used in the configuration file. Further, the attack is possible only if an attacker can trigger processing of a specially crafted audio or video file with the module ngx_http_mp4_module. | |
7.5 | CVE-2023-44487 | The HTTP/2 protocol allows a denial of service (server resource consumption) because request cancellation can reset many streams quickly, as exploited in the wild in August through October 2023. | |
7.1 | CVE-2022-41742 | NGINX Open Source before versions 1.23.2 and 1.22.1, NGINX Open Source Subscription before versions R2 P1 and R1 P1, and NGINX Plus before versions R27 P1 and R26 P1 have a vulnerability in the module ngx_http_mp4_module that might allow a local attacker to cause a worker process crash, or might result in worker process memory disclosure by using a specially crafted audio or video file. The issue affects only NGINX products that are built with the module ngx_http_mp4_module, when the mp4 directive is used in the configuration file. Further, the attack is possible only if an attacker can trigger processing of a specially crafted audio or video file with the module ngx_http_mp4_module. | |
6.8 | CVE-2021-23017 | A security issue in nginx resolver was identified, which might allow an attacker who is able to forge UDP packets from the DNS server to cause 1-byte memory overwrite, resulting in worker process crash or potential other impact. | |
5.8 | CVE-2021-3618 | ALPACA is an application layer protocol content confusion attack, exploiting TLS servers implementing different protocols but using compatible certificates, such as multi-domain or wildcard certificates. A MiTM attacker having access to victim's traffic at the TCP/IP layer can redirect traffic from one subdomain to another, resulting in a valid TLS session. This breaks the authentication of TLS and cross-protocol attacks may be possible where the behavior of one protocol service may compromise the other at the application layer. |
Vulnerability description
Vulnerabilities found for Nginx 1.18.0
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.;
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible SSH service.
Starting Nmap ( https://nmap.org ) at 2025-04-13 02:33 EEST
Nmap scan report for tolkoti.ru (193.200.74.253)
Host is up (0.061s latency).
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 8.9p1 Ubuntu 3ubuntu0.11 (Ubuntu Linux; protocol 2.0)
| ssh-auth-methods:
| Supported authentication methods:
| publickey
|_ password
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 1.66 seconds
Vulnerability description
We found that the SSH service with username/password authentication is publicly accessible. Network administrators often use remote administration protocols to control devices like switches, routers, and other essential systems. However, allowing these services to be accessible via the Internet can increase security risks, creating potential opportunities for attacks on the organization.
Risk description
Exposing this service online with username/password authentication can enable attackers to launch authentication attacks, like guessing login credentials, and potentially gaining unauthorized access. Vulnerabilities, such as unpatched software, protocol flaws, or backdoors could also be exploited. An example is the CVE-2024-3094 (XZ Utils Backdoor) vulnerability.
Recommendation
We recommend turning off SSH with username/password authentication access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the SSH service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, it is advisable to utilize SSH Public Key Authentication since it employs a key pair to verify the identity of a user or process.
Evidence
We managed to detect a publicly accessible MySQL service.
PORT STATE SERVICE VERSION
3306/tcp open mysql MySQL 8.0.41-0ubuntu0.22.04.1
Vulnerability description
We identified that the MySQL service is publicly accessible. MySQL serves as a common database for numerous web applications and services for data storage, making it a potential prime target for determined attackers.
Risk description
The risk exists that an attacker exploits this issue by launching a password-based attack on the MySQL service. Furthermore, they could exploit zero-day vulnerabilities to obtain remote access to the MySQL database server, thereby gaining complete control over its operating system and associated services. Such an attack could lead to the exposure of confidential or sensitive information.
Recommendation
We recommend turning off public Internet access to MySQL and opting for a Virtual Private Network (VPN) that enforces two-factor authentication (2FA). Avoid enabling direct user authentication to the MySQL service via the Internet, as this could enable attackers to engage in password-guessing and potentially initiate attacks leading to complete control. However, if the MySQL service is required to be directly accessible over the Internet, we recommend reconfiguring it to be accessible only from known IP addresses.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
tolkoti.ru | SPF | Sender Policy Framework | "v=spf1 include:beget.com ip4:95.163.16.0/24 ~all" |
Vulnerability description
We found that the Sender Policy Framework (SPF) record for the domain is configured with ~all (soft fail), which indicates that emails from unauthorized IP addresses are not explicitly denied. Instead, the recipient mail server is instructed to treat these messages with suspicion but may still accept them. This configuration may not provide enough protection against email spoofing and unauthorized email delivery, leaving the domain more vulnerable to impersonation attempts.
Risk description
The ~all directive in an SPF record allows unauthorized emails to pass through some email servers, even though they fail SPF verification. While such emails may be marked as suspicious or placed into a spam folder, not all mail servers handle soft fail conditions consistently. This creates a risk that malicious actors can spoof the domain to send phishing emails or other fraudulent communications, potentially causing damage to the organization's reputation and leading to successful social engineering attacks.
Recommendation
We recommend changing the SPF record's ~all (soft fail) directive to -all (hard fail). The -all setting tells recipient mail servers to reject emails from any IP addresses not listed in the SPF record, providing stronger protection against email spoofing. Ensure that all legitimate IP addresses and services that send emails on behalf of your domain are properly included in the SPF record before implementing this change.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
_dmarc.tolkoti.ru | TXT | Text record | "v=DMARC1;p=reject;sp=reject;rua=mailto:dmarc@tolkoti.ru" |
Vulnerability description
We found that the DMARC record for the domain is not configured with ruf tag. A missing ruf (forensic reporting) tag in a DMARC record indicates that the domain owner has not enabled the collection of detailed failure reports. Forensic reports provide valuable insights into specific instances where emails fail DMARC authentication. Without the ruf tag, the domain administrator loses the ability to receive and analyze these reports, making it difficult to investigate individual email failures or identify targeted phishing or spoofing attacks that may be exploiting weaknesses in the email authentication setup.
Risk description
Without forensic reports (ruf), domain owners have limited visibility into the specifics of failed DMARC validation. This means potential malicious activity, such as email spoofing or phishing attempts, might go unnoticed until they result in more significant security breaches or reputational damage. Forensic reports allow for quick response to email abuses by providing detailed information about the failure, including the header information of the emails involved. The absence of this data hampers an organization's ability to identify and mitigate threats targeting its domain, increasing the risk of ongoing spoofing and fraud.
Recommendation
We recommend configuring the ruf tag in the DMARC record. This tag specifies where forensic reports should be sent, providing the domain owner with detailed data on DMARC validation failures. Forensic reports allow administrators to analyze why certain emails failed authentication, making it easier to fine-tune DMARC policies or address potential vulnerabilities. Ensure that the ruf email address belongs to a secure and trusted location capable of handling sensitive email data.
Evidence
We managed to detect that nginx has reached the End-of-Life (EOL).
Version detected: 1.18.0 End-of-life date: 2021-04-20 Latest version for the cycle: 1.18.0 This release cycle (1.18) doesn't have long-term-support (LTS). The cycle was released on 2020-04-21 and its latest release date was 2020-04-21.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
tolkoti.ru | A | IPv4 address | 193.200.74.253 |
tolkoti.ru | NS | Name server | ns2.beget.ru |
tolkoti.ru | NS | Name server | ns1.beget.ru |
tolkoti.ru | NS | Name server | ns2.beget.pro |
tolkoti.ru | NS | Name server | ns1.beget.pro |
tolkoti.ru | NS | Name server | ns2.beget.com |
tolkoti.ru | NS | Name server | ns1.beget.com |
tolkoti.ru | MX | Mail server | 10 mx1.beget.ru |
tolkoti.ru | MX | Mail server | 20 mx2.beget.ru |
tolkoti.ru | SOA | Start of Authority | ns1.beget.com. hostmaster.beget.com. 1744290193 300 600 86400 300 |
tolkoti.ru | TXT | Text record | "mailru-verification: 956b5152a6de196d" |
tolkoti.ru | SPF | Sender Policy Framework | "v=spf1 include:beget.com ip4:95.163.16.0/24 ~all" |
_dmarc.tolkoti.ru | TXT | Text record | "v=DMARC1;p=reject;sp=reject;rua=mailto:dmarc@tolkoti.ru" |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Vulnerability description
OS detection couldn't determine the operating system.
Evidence
We managed to detect the redirect using the following Request / Response chain.
Recommendation
Vulnerability checks are skipped for ports that redirect to another port. We recommend scanning the redirected port directly.
Evidence
DKIM selector | Key type | Key size | Value |
---|---|---|---|
key | rsa | 1296 | "v=DKIM1; k=rsa; p=MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDUQgquYDIUBLWxXF1ph4VLCpQJBeB6zT3mqtIfLKoIMDz9fw6F5Z82N2ZeokP6F+KhsM5DpKq6I2CCvlwgLW1yq2QJQeOI13D9O0HYq1xuSZKIwRw2ChdRt7icWXLZEEEUcgL59gqOgN6mK9pVWnREs019wOH7aXmLVHmhj/pl6wIDAQAB" |
Evidence
Software / Version | Category |
---|---|
Ubuntu | Operating systems |
Nginx 1.18.0 | Web servers, Reverse proxies |
jQuery | JavaScript libraries |
Swiper | JavaScript libraries |
PWA | Miscellaneous |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.