Vulnerability Scan Result

IP address | 83.138.80.227 |
Country | DE ![]() |
AS number | AS34895 |
Net name | Ripe NCC ASN Block |
21/tcp | ftp | ProFTPD - |
22/tcp | ssh | - - |
25/tcp | smtp | Sendmail 8.15.2 |
80/tcp | http | Apache httpd 2.4.54 |
110/tcp | pop3 | Dovecot pop3d - |
143/tcp | imap | Dovecot imapd - |
443/tcp | https | Apache httpd 2.4.54 |
465/tcp | smtp | Sendmail 8.15.2 |
587/tcp | smtp | Sendmail 8.15.2 |
990/tcp | ftp | ProFTPD - |
993/tcp | imaps | - - |
995/tcp | pop3s | - - |
3306/tcp | mysql | MySQL - |
Software / Version | Category |
---|---|
Contao | CMS |
FreeBSD | Operating systems |
Apache HTTP Server 2.4.54 | Web servers |
jQuery 3.6.0 | JavaScript libraries |
Open Graph | Miscellaneous |
OpenSSL 1.0.2u | Web server extensions |
PHP | Programming languages |
PWA | Miscellaneous |
Headroom.js | Widgets, JavaScript libraries |
HSTS | Security |
YouTube | Video players |
Web Application Vulnerabilities
Evidence
Risk Level | CVSS | CVE | Summary | Affected software |
---|---|---|---|---|
10 | CVE-2022-1292 | The c_rehash script does not properly sanitise shell metacharacters to prevent command injection. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). Fixed in OpenSSL 1.1.1o (Affected 1.1.1-1.1.1n). Fixed in OpenSSL 1.0.2ze (Affected 1.0.2-1.0.2zd). | openssl 1.0.2u | |
10 | CVE-2022-2068 | In addition to the c_rehash shell command injection identified in CVE-2022-1292, further circumstances where the c_rehash script does not properly sanitise shell metacharacters to prevent command injection were found by code review. When the CVE-2022-1292 was fixed it was not discovered that there are other places in the script where the file names of certificates being hashed were possibly passed to a command executed through the shell. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.4 (Affected 3.0.0,3.0.1,3.0.2,3.0.3). Fixed in OpenSSL 1.1.1p (Affected 1.1.1-1.1.1o). Fixed in OpenSSL 1.0.2zf (Affected 1.0.2-1.0.2ze). | openssl 1.0.2u | |
9.8 | CVE-2023-25690 | Some mod_proxy configurations on Apache HTTP Server versions 2.4.0 through 2.4.55 allow a HTTP Request Smuggling attack. Configurations are affected when mod_proxy is enabled along with some form of RewriteRule or ProxyPassMatch in which a non-specific pattern matches some portion of the user-supplied request-target (URL) data and is then re-inserted into the proxied request-target using variable substitution. For example, something like: RewriteEngine on RewriteRule "^/here/(.*)" "http://example.com:8080/elsewhere?$1"; [P] ProxyPassReverse /here/ http://example.com:8080/ Request splitting/smuggling could result in bypass of access controls in the proxy server, proxying unintended URLs to existing origin servers, and cache poisoning. Users are recommended to update to at least version 2.4.56 of Apache HTTP Server. | http_server 2.4.54 | |
9.8 | CVE-2024-38474 | Substitution encoding issue in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows attacker to execute scripts in directories permitted by the configuration but not directly reachable by any URL or source disclosure of scripts meant to only to be executed as CGI. Users are recommended to upgrade to version 2.4.60, which fixes this issue. Some RewriteRules that capture and substitute unsafely will now fail unless rewrite flag "UnsafeAllow3F" is specified. | http_server 2.4.54 | |
9.8 | CVE-2024-38476 | Vulnerability in core of Apache HTTP Server 2.4.59 and earlier are vulnerably to information disclosure, SSRF or local script execution via backend applications whose response headers are malicious or exploitable. Users are recommended to upgrade to version 2.4.60, which fixes this issue. | http_server 2.4.54 | |
9 | CVE-2022-36760 | Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling') vulnerability in mod_proxy_ajp of Apache HTTP Server allows an attacker to smuggle requests to the AJP server it forwards requests to. This issue affects Apache HTTP Server Apache HTTP Server 2.4 version 2.4.54 and prior versions. | http_server 2.4.54 | |
7.5 | CVE-2023-0215 | The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by end user applications. The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid, the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then a use-after-free will occur. This will most likely result in a crash. This scenario occurs directly in the internal function B64_write_ASN1() which may cause BIO_new_NDEF() to be called and will subsequently call BIO_pop() on the BIO. This internal function is in turn called by the public API functions PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream, SMIME_write_ASN1, SMIME_write_CMS and SMIME_write_PKCS7. Other public API functions that may be impacted by this include i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and i2d_PKCS7_bio_stream. The OpenSSL cms and smime command line applications are similarly affected. | openssl 1.0.2u | |
7.5 | CVE-2023-0464 | A security vulnerability has been identified in all supported versions of OpenSSL related to the verification of X.509 certificate chains that include policy constraints. Attackers may be able to exploit this vulnerability by creating a malicious certificate chain that triggers exponential use of computational resources, leading to a denial-of-service (DoS) attack on affected systems. Policy processing is disabled by default but can be enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function. | openssl 1.0.2u | |
7.5 | CVE-2006-20001 | A carefully crafted If: request header can cause a memory read, or write of a single zero byte, in a pool (heap) memory location beyond the header value sent. This could cause the process to crash. This issue affects Apache HTTP Server 2.4.54 and earlier. | http_server 2.4.54 | |
7.4 | CVE-2023-0286 | There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network. | openssl 1.0.2u |
Vulnerability description
We noticed known vulnerabilities in the target application based on the server responses. They are usually related to outdated systems and expose the affected applications to the risk of unauthorized access to confidential data and possibly denial of service attacks. Depending on the system distribution the affected software can be patched but displays the same version, requiring manual checking.
Risk description
The risk is that an attacker could search for an appropriate exploit (or create one himself) for any of these vulnerabilities and use it to attack the system.
Recommendation
In order to eliminate the risk of these vulnerabilities, we recommend you check the installed software version and upgrade to the latest version.
Classification
CWE | CWE-1026 |
OWASP Top 10 - 2017 | A9 - Using Components with Known Vulnerabilities |
OWASP Top 10 - 2021 | A6 - Vulnerable and Outdated Components |
Evidence
URL | Evidence |
---|---|
https://2022.camp.contao.org/ | Response does not include the HTTP Content-Security-Policy security header or meta tag |
Vulnerability description
We noticed that the target application lacks the Content-Security-Policy (CSP) header in its HTTP responses. The CSP header is a security measure that instructs web browsers to enforce specific security rules, effectively preventing the exploitation of Cross-Site Scripting (XSS) vulnerabilities.
Risk description
The risk is that if the target application is vulnerable to XSS, lack of this header makes it easily exploitable by attackers.
Recommendation
Configure the Content-Security-Header to be sent with each HTTP response in order to apply the specific policies needed by the application.
Classification
CWE | CWE-693 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Software / Version | Category |
---|---|
Contao | CMS |
FreeBSD | Operating systems |
Apache HTTP Server 2.4.54 | Web servers |
jQuery 3.6.0 | JavaScript libraries |
Open Graph | Miscellaneous |
OpenSSL 1.0.2u | Web server extensions |
PHP | Programming languages |
PWA | Miscellaneous |
Headroom.js | Widgets, JavaScript libraries |
HSTS | Security |
YouTube | Video players |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
We found the robots.txt on the target server. This file instructs web crawlers what URLs and endpoints of the web application they can visit and crawl. Website administrators often misuse this file while attempting to hide some web pages from the users.
Risk description
There is no particular security risk in having a robots.txt file. However, it's important to note that adding endpoints in it should not be considered a security measure, as this file can be directly accessed and read by anyone.
Recommendation
We recommend you to manually review the entries from robots.txt and remove the ones which lead to sensitive locations in the website (ex. administration panels, configuration files, etc).
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
URL | Method | Summary |
---|---|---|
https://2022.camp.contao.org/?canary=xjfepyiucl | TRACE | We injected a random query parameter inside a HTTP TRACE request. The server responded with a 200 OK HTTP status code and we found the random value reflected in the body of the response. |
Vulnerability description
We have noticed that the webserver responded with a 200 OK HTTP status when a TRACE/TRACK HTTP request was sent. Originally intended for debugging purposes, these methods respond to requests by echoing back the contents of the request received.
Risk description
The only risk this might present nowadays is revealing HTTP headers that have been appended by intermediate proxy servers on the way to the destination. This can present a danger if any of those headers contain sensitive information like authentication information, secret keys.
Recommendation
Generally, it is good practice to disable unused functionality to minimize your attack surface. We recommend that you disable unused HTTP methods, or even better, allow only the ones that you know are used. This can be done using your webserver configuration.
Classification
CWE | CWE-16 |
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Evidence
Vulnerability description
Website is accessible.
Vulnerability description
We have noticed that the server is missing the security.txt file, which is considered a good practice for web security. It provides a standardized way for security researchers and the public to report security vulnerabilities or concerns by outlining the preferred method of contact and reporting procedures.
Risk description
There is no particular risk in not having a security.txt file for your server. However, this file is important because it offers a designated channel for reporting vulnerabilities and security issues.
Recommendation
We recommend you to implement the security.txt file according to the standard, in order to allow researchers or users report any security issues they find, improving the defensive mechanisms of your server.
Classification
OWASP Top 10 - 2017 | A6 - Security Misconfiguration |
OWASP Top 10 - 2021 | A5 - Security Misconfiguration |
Infrastructure Vulnerabilities
Evidence
Risk level | CVSS | CVE | Summary |
---|---|---|---|
9.8 | CVE-2023-25690 | Some mod_proxy configurations on Apache HTTP Server versions 2.4.0 through 2.4.55 allow a HTTP Request Smuggling attack. Configurations are affected when mod_proxy is enabled along with some form of RewriteRule or ProxyPassMatch in which a non-specific pattern matches some portion of the user-supplied request-target (URL) data and is then re-inserted into the proxied request-target using variable substitution. For example, something like: RewriteEngine on RewriteRule "^/here/(.*)" "http://example.com:8080/elsewhere?$1"; [P] ProxyPassReverse /here/ http://example.com:8080/ Request splitting/smuggling could result in bypass of access controls in the proxy server, proxying unintended URLs to existing origin servers, and cache poisoning. Users are recommended to update to at least version 2.4.56 of Apache HTTP Server. | |
9.8 | CVE-2024-38474 | Substitution encoding issue in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows attacker to execute scripts in directories permitted by the configuration but not directly reachable by any URL or source disclosure of scripts meant to only to be executed as CGI. Users are recommended to upgrade to version 2.4.60, which fixes this issue. Some RewriteRules that capture and substitute unsafely will now fail unless rewrite flag "UnsafeAllow3F" is specified. | |
9.8 | CVE-2024-38476 | Vulnerability in core of Apache HTTP Server 2.4.59 and earlier are vulnerably to information disclosure, SSRF or local script execution via backend applications whose response headers are malicious or exploitable. Users are recommended to upgrade to version 2.4.60, which fixes this issue. | |
9 | CVE-2022-36760 | Inconsistent Interpretation of HTTP Requests ('HTTP Request Smuggling') vulnerability in mod_proxy_ajp of Apache HTTP Server allows an attacker to smuggle requests to the AJP server it forwards requests to. This issue affects Apache HTTP Server Apache HTTP Server 2.4 version 2.4.54 and prior versions. | |
7.5 | CVE-2006-20001 | A carefully crafted If: request header can cause a memory read, or write of a single zero byte, in a pool (heap) memory location beyond the header value sent. This could cause the process to crash. This issue affects Apache HTTP Server 2.4.54 and earlier. |
Vulnerability description
Vulnerabilities found for Apache HTTP Server 2.4.54
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.;
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
Risk level | CVSS | CVE | Summary |
---|---|---|---|
10 | CVE-2022-1292 | The c_rehash script does not properly sanitise shell metacharacters to prevent command injection. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). Fixed in OpenSSL 1.1.1o (Affected 1.1.1-1.1.1n). Fixed in OpenSSL 1.0.2ze (Affected 1.0.2-1.0.2zd). | |
10 | CVE-2022-2068 | In addition to the c_rehash shell command injection identified in CVE-2022-1292, further circumstances where the c_rehash script does not properly sanitise shell metacharacters to prevent command injection were found by code review. When the CVE-2022-1292 was fixed it was not discovered that there are other places in the script where the file names of certificates being hashed were possibly passed to a command executed through the shell. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.4 (Affected 3.0.0,3.0.1,3.0.2,3.0.3). Fixed in OpenSSL 1.1.1p (Affected 1.1.1-1.1.1o). Fixed in OpenSSL 1.0.2zf (Affected 1.0.2-1.0.2ze). | |
7.5 | CVE-2023-0215 | The public API function BIO_new_NDEF is a helper function used for streaming ASN.1 data via a BIO. It is primarily used internally to OpenSSL to support the SMIME, CMS and PKCS7 streaming capabilities, but may also be called directly by end user applications. The function receives a BIO from the caller, prepends a new BIO_f_asn1 filter BIO onto the front of it to form a BIO chain, and then returns the new head of the BIO chain to the caller. Under certain conditions, for example if a CMS recipient public key is invalid, the new filter BIO is freed and the function returns a NULL result indicating a failure. However, in this case, the BIO chain is not properly cleaned up and the BIO passed by the caller still retains internal pointers to the previously freed filter BIO. If the caller then goes on to call BIO_pop() on the BIO then a use-after-free will occur. This will most likely result in a crash. This scenario occurs directly in the internal function B64_write_ASN1() which may cause BIO_new_NDEF() to be called and will subsequently call BIO_pop() on the BIO. This internal function is in turn called by the public API functions PEM_write_bio_ASN1_stream, PEM_write_bio_CMS_stream, PEM_write_bio_PKCS7_stream, SMIME_write_ASN1, SMIME_write_CMS and SMIME_write_PKCS7. Other public API functions that may be impacted by this include i2d_ASN1_bio_stream, BIO_new_CMS, BIO_new_PKCS7, i2d_CMS_bio_stream and i2d_PKCS7_bio_stream. The OpenSSL cms and smime command line applications are similarly affected. | |
7.5 | CVE-2023-0464 | A security vulnerability has been identified in all supported versions of OpenSSL related to the verification of X.509 certificate chains that include policy constraints. Attackers may be able to exploit this vulnerability by creating a malicious certificate chain that triggers exponential use of computational resources, leading to a denial-of-service (DoS) attack on affected systems. Policy processing is disabled by default but can be enabled by passing the `-policy' argument to the command line utilities or by calling the `X509_VERIFY_PARAM_set1_policies()' function. | |
7.4 | CVE-2023-0286 | There is a type confusion vulnerability relating to X.400 address processing inside an X.509 GeneralName. X.400 addresses were parsed as an ASN1_STRING but the public structure definition for GENERAL_NAME incorrectly specified the type of the x400Address field as ASN1_TYPE. This field is subsequently interpreted by the OpenSSL function GENERAL_NAME_cmp as an ASN1_TYPE rather than an ASN1_STRING. When CRL checking is enabled (i.e. the application sets the X509_V_FLAG_CRL_CHECK flag), this vulnerability may allow an attacker to pass arbitrary pointers to a memcmp call, enabling them to read memory contents or enact a denial of service. In most cases, the attack requires the attacker to provide both the certificate chain and CRL, neither of which need to have a valid signature. If the attacker only controls one of these inputs, the other input must already contain an X.400 address as a CRL distribution point, which is uncommon. As such, this vulnerability is most likely to only affect applications which have implemented their own functionality for retrieving CRLs over a network. |
Vulnerability description
Vulnerabilities found for OpenSSL 1.0.2u
Risk description
These vulnerabilities expose the affected applications to the risk of unauthorized access to confidential data and possibly to denial of service attacks. An attacker could search for an appropriate exploit (or create one) for any of these vulnerabilities and use it to attack the system. Notes: - The vulnerabilities are identified based on the server's version.; - Only the first 5 vulnerabilities with the highest risk are shown for each port.;
Recommendation
We recommend you to upgrade the affected software to the latest version in order to eliminate the risks imposed by these vulnerabilities.
Evidence
We managed to detect a publicly accessible MySQL service.
PORT STATE SERVICE VERSION
3306/tcp open mysql MySQL
Vulnerability description
We identified that the MySQL service is publicly accessible. MySQL serves as a common database for numerous web applications and services for data storage, making it a potential prime target for determined attackers.
Risk description
The risk exists that an attacker exploits this issue by launching a password-based attack on the MySQL service. Furthermore, they could exploit zero-day vulnerabilities to obtain remote access to the MySQL database server, thereby gaining complete control over its operating system and associated services. Such an attack could lead to the exposure of confidential or sensitive information.
Recommendation
We recommend turning off public Internet access to MySQL and opting for a Virtual Private Network (VPN) that enforces two-factor authentication (2FA). Avoid enabling direct user authentication to the MySQL service via the Internet, as this could enable attackers to engage in password-guessing and potentially initiate attacks leading to complete control. However, if the MySQL service is required to be directly accessible over the Internet, we recommend reconfiguring it to be accessible only from known IP addresses.
Evidence
We managed to detect a publicly accessible File Transfer Protocol (FTP) service.
PORT STATE SERVICE VERSION
21/tcp open ftp ProFTPD
Vulnerability description
We found that the File Transfer Protocol (FTP) service is publicly accessible. The FTP enables client systems to connect to upload and download files. Nonetheless, FTP lacks encryption for the data exchanged between the server and the client, leaving all transferred data exposed in plaintext.
Risk description
Exposing this service online can enable attackers to execute man-in-the-middle attacks, capturing sensitive user credentials and the contents of files because FTP operates without encryption. The entirety of the communication between the client and the server remains unsecured in plaintext. This acquired information could further facilitate additional attacks within the network.
Recommendation
We recommend turning off FTP access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the FTP service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing SFTP (Secure File Transfer Protocol) is recommended as this protocol employs encryption to secure data transfers.
Evidence
We managed to detect a publicly accessible File Transfer Protocol (FTP) service.
PORT STATE SERVICE VERSION
990/tcp open ftp ProFTPD
Vulnerability description
We found that the File Transfer Protocol (FTP) service is publicly accessible. The FTP enables client systems to connect to upload and download files. Nonetheless, FTP lacks encryption for the data exchanged between the server and the client, leaving all transferred data exposed in plaintext.
Risk description
Exposing this service online can enable attackers to execute man-in-the-middle attacks, capturing sensitive user credentials and the contents of files because FTP operates without encryption. The entirety of the communication between the client and the server remains unsecured in plaintext. This acquired information could further facilitate additional attacks within the network.
Recommendation
We recommend turning off FTP access over the Internet and instead using a Virtual Private Network (VPN) that mandates two-factor authentication (2FA). If the FTP service is essential for business purposes, we recommend limiting access only from designated IP addresses using a firewall. Furthermore, utilizing SFTP (Secure File Transfer Protocol) is recommended as this protocol employs encryption to secure data transfers.
Evidence
We managed to detect that OpenSSL has reached the End-of-Life (EOL).
Version detected: 1.0.2u End-of-life date: 2019-12-31 Latest version for the cycle: 1.0.2u This release cycle (1.0.2) does have long-term-support (LTS). The cycle was released on 2015-01-22 and its latest release date was 2019-12-20.
Risk description
Using end-of-life (EOL) software poses significant security risks for organizations. EOL software no longer receives updates, including critical security patches. This creates a vulnerability landscape where known and potentially new security flaws remain unaddressed, making the software an attractive target for malicious actors. Attackers can exploit these vulnerabilities to gain unauthorized access, disrupt services, or steal sensitive data. Moreover, without updates, compatibility issues arise with newer technologies, leading to operational inefficiencies and increased potential for system failures. Additionally, regulatory and compliance risks accompany the use of EOL software. Many industries have strict data protection regulations that require up-to-date software to ensure the highest security standards. Non-compliance can result in hefty fines and legal consequences. Organizations also risk damaging their reputation if a breach occurs due to outdated software, eroding customer trust and potentially leading to a loss of business. Therefore, continuing to use EOL software undermines both security posture and business integrity, necessitating timely upgrades and proactive risk management strategies.
Recommendation
To mitigate the risks associated with end-of-life (EOL) software, it's crucial to take proactive steps. Start by identifying any EOL software currently in use within your organization. Once identified, prioritize upgrading or replacing these applications with supported versions that receive regular updates and security patches. This not only helps close security gaps but also ensures better compatibility with newer technologies, enhancing overall system efficiency and reliability.Additionally, develop a comprehensive software lifecycle management plan. This plan should include regular audits to identify upcoming EOL dates and a schedule for timely updates or replacements. Train your IT staff and users about the importance of keeping software up to date and the risks associated with using outdated versions. By maintaining a proactive approach to software management, you can significantly reduce security risks, ensure compliance with industry regulations, and protect your organization's reputation and customer trust.
Evidence
Domain Queried | DNS Record Type | Description | Value |
---|---|---|---|
www.2022.camp.contao.org | A | IPv4 address | 83.138.80.227 |
www.2022.camp.contao.org | NS | Name server | leia.han-solo.net |
www.2022.camp.contao.org | NS | Name server | han.han-solo.net |
www.2022.camp.contao.org | MX | Mail server | 0 mail.fijive.han-solo.net |
www.2022.camp.contao.org | MX | Mail server | 10 mail.fijive.han-solo.net |
www.2022.camp.contao.org | SOA | Start of Authority | leia.han-solo.net. www.han-solo.net. 2016031001 86400 1800 604800 86400 |
www.2022.camp.contao.org | CNAME | Canonical name | fijive.han-solo.net |
Risk description
An initial step for an attacker aiming to learn about an organization involves conducting searches on its domain names to uncover DNS records associated with the organization. This strategy aims to amass comprehensive insights into the target domain, enabling the attacker to outline the organization's external digital landscape. This gathered intelligence may subsequently serve as a foundation for launching attacks, including those based on social engineering techniques. DNS records pointing to services or servers that are no longer in use can provide an attacker with an easy entry point into the network.
Recommendation
We recommend reviewing all DNS records associated with the domain and identifying and removing unused or obsolete records.
Evidence
Vulnerability description
OS detection couldn't determine the operating system.
Evidence
We managed to detect the redirect using the following Request / Response chain.
Recommendation
Vulnerability checks are skipped for ports that redirect to another port. We recommend scanning the redirected port directly.
Evidence
Software / Version | Category |
---|---|
Contao | CMS |
PHP | Programming languages |
FreeBSD | Operating systems |
YouTube | Video players |
OpenSSL 1.0.2u | Web server extensions |
Apache HTTP Server 2.4.54 | Web servers |
jQuery | JavaScript libraries |
Headroom.js | Widgets, JavaScript libraries |
HSTS | Security |
PWA | Miscellaneous |
Open Graph | Miscellaneous |
Vulnerability description
We noticed that server software and technology details are exposed, potentially aiding attackers in tailoring specific exploits against identified systems and versions.
Risk description
The risk is that an attacker could use this information to mount specific attacks against the identified software type and version.
Recommendation
We recommend you to eliminate the information which permits the identification of software platform, technology, server and operating system: HTTP server headers, HTML meta information, etc.